Skip to main content

Diversity and Taxonomy of Aliphatic Hydrocarbon Producers

  • Living reference work entry
  • First Online:
Biogenesis of Hydrocarbons

Abstract

Microbially sourced alkanes and alkenes derived from fatty acids are important in nature and in society with potential as bio-based fuels and other industrial, medical, and consumer products. While the production of hydrocarbons by bacteria was first reported in the literature over half a century ago, most biosynthetic gene clusters and biochemical pathways have only been uncovered within the past decade. A deepened understanding of the genes and enzymes for fatty acid-derived hydrocarbon production has spurred genome mining efforts to determine the diversity of hydrocarbon-producing bacteria. In this chapter, we focus on prokaryotic pathways for the biosynthesis of medium- and long-chain alkanes and alkenes that have fatty acid precursors. Emphasis is placed on the taxonomy of hydrocarbon-producing organisms and the physiological and ecological role of these compounds. Hydrocarbons produced by bacteria have diverse cellular functions, including modulating membrane fluidity in response to environmental stressors. In microbial communities, hydrocarbons drive interspecies interactions and global biogeochemical cycles. Future research needs include harnessing biochemical knowledge to engineer known pathways and using genomics to better inform the discovery of novel hydrocarbon-based natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aarts MGM, Keijzer CJ, Stiekema WJ, Pereira A (1995) Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alata I, Jallat A, Gavilan L, Chabot M, Cruz-Diaz GA, Muñoz Caro GM, Béroff K, Dartois E (2015) Vacuum ultraviolet of hydrogenated amorphous carbons. II. Small hydrocarbons production in photon dominated regions. Astron Astrophys 584:A123

    Article  Google Scholar 

  • Albro PW, Dittmer JC (1969) The biochemistry of long-chain nonisoprenoid hydrocarbons. I. Characterization of the hydrocarbons of Sarcina lutea and the isolation of possible intermediates of biosynthesis. Biochemistry 8:394–405

    Article  CAS  PubMed  Google Scholar 

  • Aukema KG, Makris TM, Stoian SA, Richman JE, Münck E, Lipscomb JD, Wackett LP (2013) Cyanobacterial aldehyde deformylase oxygenation of aldehydes yields n-1 aldehydes and alcohols in addition to alkanes. ACS Catal 3(10):2228–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailly A, Weisskopf L (2017) Mining the Volatilomes of Plant-Associated Microbiota for New Biocontrol Solutions. Front Microbiol 8

    Google Scholar 

  • Belcher J, McLean KJ, Matthews S, Woodward LS, Fisher K, Rigby SEJ, Nelson DR, Potts D, Baynham MT, Parker DA, Leys D, Munro AW (2014) Structure and biochemical properties of the alkene producing cytochrome P450 OleTJE (CYP152L1) from the Jeotgalicoccus sp 8456 bacterium. J Biol Chem 289:6535–6550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beller HR, Goh EB, Keasling JD (2011) Definitive alkene identification needed for in vitro studies with ole (olefin biosynthesis) proteins. J Biol Chem 286:LE11–LE11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berla BM, Saha R, Maranas CD, Pakrasi HB (2015) Cyanobacterial alkanes modulate photosynthetic cyclic electron flow to assist growth under cold stress. Sci Rep 5:12

    Article  Google Scholar 

  • Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure JD, Haslam RP, Napier JA, Lessire R, Joubes J (2012) Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. The Plant Cell 24(7):3106–3118

    Google Scholar 

  • Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058

    Article  CAS  PubMed  Google Scholar 

  • Bonnett SA, Papireddy K, Higgins S, del Cardayre S, Reynolds KA (2011) Functional characterization of an NADPH dependent 2-alkyl-3-ketoalkanoic acid reductase involved in olefin biosynthesis in Stenotrophomonas maltophilia. Biochemistry 50:9633–9640

    Article  CAS  PubMed  Google Scholar 

  • Bos LDJ, Sterk PJ, Schultz MJ (2013) Volatile metabolites of pathogens: a systematic review. PLoS Pathog 9:8

    Article  Google Scholar 

  • Chang ZX, Sitachitta N, Rossi JV, Roberts MA, Flatt PM, Jia JY, Sherman DH, Gerwick WH (2004) Biosynthetic pathway and gene cluster analysis of curacin A, an anti-tubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod 67:1356–1367

    Article  CAS  PubMed  Google Scholar 

  • Christenson JK, Jensen MR, Goblirsch BR, Mohamed F, Zhang W, Wilmot CM, Wackett LP (2017a) Active multienzyme assemblies for long-chain olefinic hydrocarbon biosynthesis. J Bacteriol 199:e00890-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Christenson JK, Richman JE, Jensen MR, Neufeld JY, Wilmot CM, Wackett LP (2017b) β-Lactone synthetase found in the olefin biosynthesis pathway. Biochemistry 56:348–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christenson JK, Robinson SL, Engel TA, Richman JE, Kim AN, Wackett LP (2017c) OleB from bacterial hydrocarbon biosynthesis is a β-lactone decarboxylase that shares key features with haloalkane dehalogenases. Biochemistry 56(40):5278–5287

    Google Scholar 

  • Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH, Allen EE, Gerwick L, Gerwick WH (2014) Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS One 9:12

    Article  Google Scholar 

  • Damste JSS, Strous M, Rijpstra WIC, Hopmans EC, Geenevasen JAJ, van Duin ACT, van Niftrik LA, Jetten MSM (2002) Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419:708–712

    Article  Google Scholar 

  • Dermott SF, Sagan C (1995) Tidal effects of disconnected hydrocarbon seas on Titan. Nature 374(6519):238–240

    Article  CAS  PubMed  Google Scholar 

  • Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL, Jiao NAZ, Karl DM, Li WKW, Lomas MW, Veneziano D, Vera CS, Vrugt JA, Martiny AC (2013) Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci U S A 110:9824–9829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foo JL, Susanto AV, Keasling JD, Leong SS, Chang MW (2017) Whole-cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae. Biotechnol Bioeng 114(1):232–237

    Article  CAS  PubMed  Google Scholar 

  • Frias JA, Richman JE, Wackett LP (2009) C-29 olefinic hydrocarbons biosynthesized by Arthrobacter species. Appl Environ Microbiol 75:1774–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frias JA, Richman JE, Erickson JA, Wackett LP (2011) Purification and characterization of OleA from Xanthomonas campestris and demonstration of a non-decarboxylative Claisen condensation reaction. J Biol Chem 286(13):10930–10938

    Google Scholar 

  • Friedman L, DaCosta B (2008) Hydrocarbon-producing genes and methods of their use. International Patent WO/2008/147781

    Google Scholar 

  • Gibson DT (1982) Microbial degradation of hydrocarbons. Toxicol Environ Chem 5:237–250

    Article  CAS  Google Scholar 

  • Goblirsch BR, Jensen MR, Mohamed F, Wackett LP, Wilmot CM (2016) Substrate trapping in crystals of the thiolase OleA identifies three channels that enable long-chain olefin biosynthesis. J Biol Chem 291:26698–26706. https://doi.org/10.1074/jbc.M116.760892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant JL, Hsieh CH, Makris TM (2015) Decarboxylation of fatty acids to terminal alkenes by cytochrome P450 compound I. J Am Chem Soc 137:4940–4943

    Article  CAS  PubMed  Google Scholar 

  • Grant JL, Mitchell ME, Makris TM (2016) Catalytic strategy for carbon–carbon bond scission by the cytochrome P450 OleT. Proc Natl Acad Sci U S A 113:10049–10054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gschwend P, Zafiriou OC, Gagosian RB (1980) Volatile organic compounds in seawater from the Peru upwelling region. Limnol Oceanogr 25:1044–1053

    Article  CAS  Google Scholar 

  • Han J, Calvin M (1969) Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proc Natl Acad Sci U S A 64(2):436–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopwood DA (2009) Complex enzymes in microbial natural product biosynthesis, part B: polyketides, aminocoumarins and carbohydrates. Vol. 459. Academic Press

    Google Scholar 

  • Hsieh CH, Makris TM (2016) Expanding the substrate scope and reactivity of cytochrome P450 OleT. Biochem Biophys Res Commun 476:462–466

    Article  CAS  PubMed  Google Scholar 

  • Hunziker L, Bönisch D, Groenhagen U, Bailly A, Schulz S, Weisskopf L, Cullen D, (2015) Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl Environ Microbiol 81(3):821–830

    Google Scholar 

  • Jacob J (1978) Hydrocarbon and multibranched ester waxes from uropygial gland secretion of grebes. J Lipid Res 19:148–153

    CAS  PubMed  Google Scholar 

  • Kancharla P, Bonnett SA, Reynolds KA (2016) Stenotrophomonas maltophilia OleC-catalyzed ATP-dependent formation of long-chain Z-olefins from 2-alkyl-3-hydroxyalkanoic acids. Chembiochem 17:1426–1429

    Article  CAS  PubMed  Google Scholar 

  • Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S (2003) Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science 299:1039–1042

    Article  CAS  PubMed  Google Scholar 

  • Katona G, Carpentier P, Niviere V, Amara P, Adam V, Ohana J, Tsanov N, Bourgeois D (2007) Raman-assisted crystallography reveals end-on peroxide intermediates in a nonheme iron enzyme. Science 316:449–453

    Article  CAS  PubMed  Google Scholar 

  • Lea-Smith DJ, Biller SJ, Davey MP, Cotton CAR, Sepulveda BMP, Turchyn AV, Scanlan DJ, Smith AG, Chisholm SW, Howe CJ (2015) Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci U S A 112:13591–13596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lea-Smith DJ, Ortiz-Suarez ML, Lenn T, Nurnberg DJ, Baers LL, Davey MP, Parolini L, Huber RG, Cotton CAR, Mastroianni G, Bombelli P, Ungerer P, Stevens TJ, Smith AG, Bond PJ, Mullineaux CW, Howe CJ (2016) Hydrocarbons are essential for optimal cell size, division, and growth of cyanobacteria. Plant Physiol 172:1928–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nuc Acid Res 44(W1):W242–W245

    Google Scholar 

  • Matsunaga I, Yokotani N, Gotoh O, Kusunose E, Yamada M, Ichihara K (1997) Molecular cloning and expression of fatty acid alpha-hydroxylase from Sphingomonas paucimobilis. J Biol Chem 272:23592–23596

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga I, Ueda A, Fujiwara N, Sumimoto T, Ichihara K (1999) Characterization of the ybdT gene product of Bacillus subtilis: novel fatty acid beta-hydroxylating cytochrome P450. Lipids 34:841–846

    Article  CAS  PubMed  Google Scholar 

  • Matthews S, Tee KL, Rattray NJ, McLean KJ, Leys D, Parker DA, Blankley RT, Munro AW (2017) Production of alkenes and novel secondary products by P450 OleT(JE) using novel H2O2-generating fusion protein systems. FEBS Lett 591:737–750

    Article  CAS  PubMed  Google Scholar 

  • McCarthy JG, Eisman EB, Kulkarni S, Gerwick L, Gerwick WH, Wipf P, Sherman DH, Smith JL (2012) Structural basis of functional group activation by sulfotransferases in complex metabolic pathways. ACS Chem Biol 7:1994–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez-Perez D, Begemann MB, Pfleger BF (2011) Modular synthase-encoding gene involved in alpha-olefin biosynthesis in Synechococcus sp strain PCC 7002. Appl Environ Microbiol 77:4264–4267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez-Perez D, Gunasekaran S, Orler VJ, Pfleger BF (2012) A translation-coupling DNA cassette for monitoring protein translation in Escherichia coli. Metab Eng 14:298–305

    Article  CAS  PubMed  Google Scholar 

  • Mendez-Perez D, Herman NA, Pfleger BF, Nojiri H (2014) A desaturase gene involved in the formation of 1,14-nonadecadiene in Synechococcus sp. strain PCC 7002. Appl Environ Microbiol 80(19):6073–6079

    Google Scholar 

  • Nichols D (1995) A new n-C31:9 polyene hydrocarbon from Antarctic bacteria. FEMS Microbiol Lett 125(2–3):281–285

    Google Scholar 

  • Okada BK, Seyedsayamdost MR, Shen A (2017) Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol Rev 41(1):19–33

    Google Scholar 

  • Olah GA, Molnar A (2003) Hydrocarbon chemistry. Wiley, New York

    Book  Google Scholar 

  • Pye CR (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci U S A pii:201614680

    Google Scholar 

  • Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E, Fricaux T, Taquet N, Blomquist GJ, Feyereisen R (2012) An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci U S A 109:14858–14863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajakovich LJ, Nørgaard H, Warui DM, Chang WC, Li N, Booker SJ, Krebs C, Bollinger JM Jr, Pandelia ME (2015) Rapid reduction of the diferric-peroxyhemiacetal intermediate in aldehyde-deformylating oxygenase by a cyanobacterial ferredoxin: evidence for a free-radical mechanism. J Am Chem Soc 137(36):11695–11709

    Article  CAS  PubMed  Google Scholar 

  • Romero D, Traxler MF, Lopez D, Kolter R (2011) Antibiotics as signal molecules. Chem Rev 111:5492–5505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rude MA, Baron TS, Brubaker S, Alibhai M, Del Cardayre SB, Schirmer A (2011) Terminal olefin (1-alkene) biosynthesis by a novel P450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol 77:1718–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rui Z, Li X, Zhu XJ, Liu J, Domigan B, Barr I, Cate JHD, Zhang WJ (2014) Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase. Proc Natl Acad Sci U S A 111:18237–18242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rui Z, Harris NC, Zhu XJ, Huang W, Zhang WJ (2015) Discovery of a family of desaturase-like enzymes for 1-alkene biosynthesis. ACS Catal 5:7091–7094

    Article  CAS  Google Scholar 

  • Schirmer A, Rude MA, Li XZ, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Etalo DW, de Jager V, Gerards S, Zweers H, de Boer W, Garbeva P (2016) Microbial small talk: volatiles in fungal–bacterial interactions. Front Microbiol 6:1495

    Google Scholar 

  • Schwarzenbach RP, Bromund RH, Gschwend PM, Zafiriou OC (1978) Volatile organic compounds in coastal seawater. Org Geochem 1:93–107

    Article  CAS  Google Scholar 

  • Seyedsayamdost MR (2014) High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proc Natl Acad Sci USA 111(20):7266–7271

    Google Scholar 

  • Shaw JJ, Spakowicz DJ, Dalal RS, Davis JH, Lehr NA, Dunican BF, Orellana EA, Narvaez-Trujillo A, Strobel SA (2015) Biosynthesis and genomic analysis of medium-chain hydrocarbon production by the endophytic fungal isolate Nigrograna mackinnonii E5202H. Appl Microbiol Biotechnol 99:3715–3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shokri A, Que L Jr (2015) Conversion of aldehyde to alkane by a peroxoiron(III) oxygenase. J Am Chem Soc 137(24):7686–7691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snow TP, McCall BJ (2006) Diffuse atomic and molecular clouds. Ann Rev Astron Astrophys 44:367–414

    Article  CAS  Google Scholar 

  • Stephenson M, Stickland LH (1933) The bacterial formation of methane by the reduction of one-carbon compounds by molecular hydrogen. Biochem J 27:1517–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel GA, Knighton B, Kluck K, Ren YH, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328

    Article  CAS  PubMed  Google Scholar 

  • Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP (2010a) Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of OleA. Appl Environ Microbiol 76:3850–3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukovich DJ, Seffernick JL, Richman JE, Hunt KA, Gralnick JA, Wackett LP (2010b) Structure, function, and insights into the biosynthesis of a head-to-head hydrocarbon in Shewanella oneidensis strain MR-1. Appl Environ Microbiol 76:3842–3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas JB (1950) On the role of the carotenoids in photosynthesis in Rhodospirillum rubrum. Biochim Biophys Acta 5(2):186–196

    CAS  PubMed  Google Scholar 

  • Tornabene TG, Bennett EO, Oró J (1967) Fatty acid and aliphatic hydrocarbon composition of Sarcina lutea grown in three different media. J Bacteriol 94(2):344–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • U.S. Energy Information Administration (2017) International energy statistics. Available at www.eia.gov/cfapps/ipdbproject/iedindex3

  • Verdier-Pinard P, Lai JY, Yoo HD, Yu JR, Marquez B, Nagle DG, Nambu M, White JD, Falck JR, Gerwick WH, Day BW, Hamel E (1998) Structure-activity analysis of the interaction of curacin A, the potent colchicine site antimitotic agent, with tubulin and effects of analogs on the growth of MCF-7 breast cancer cells. Mol Pharmacol 53:62–76

    Article  CAS  PubMed  Google Scholar 

  • Whicher JR, Smaga SS, Hansen DA, Brown WC, Gerwick WH, Sherman DH, Smith JL (2013) Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis. Chem Biol 20:1340–1351

    Article  CAS  PubMed  Google Scholar 

  • Whicher JR, Dutta S, Hansen DA, Hale WA, Chemler JA, Dosey AM, Narayan ARH, Hakansson K, Sherman DH, Smith JL, Skiniotis G (2014) Structural rearrangements of a polyketide synthase module during its catalytic cycle. Nature 510:560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winters K, Parker PL, Van Baalen C (1969) Hydrocarbons of blue-green algae: geochemical significance. Science 163:467–468

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Lee KC, Weiss N, Kang KH, Park YH (2003) Jeotgalicoccus halotolerans gen nov, sp nov and Jeotgalicoccus psychrophilus sp nov, isolated from the traditional Korean fermented seafood jeotgal. Int J Syst Evol Microbiol 53:595–602

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Hashimoto T, Qin B, Hashimoto J, Kozone I, Kawahara T, Okada M, Awakawa T, Ito T, Asakawa Y, and Ueki M (2017) Characterization of giant modular PKSs provides insight into genetic mechanism for structural diversification of aminopolyol polyketides. Ang Chem Int Ed, 56(7), pp. 1740–1745

    Google Scholar 

  • Zobell CE (1946) Action of microörganisms on hydrocarbons. Bacteriol Rev 10(1):1–49

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge Diego Escalante and Kelly Aukema for thoughtful comments on the manuscript. S.L.R. is supported by a NSF Graduate Research Fellowship (Grant no. 00039202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence P. Wackett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Robinson, S.L., Wackett, L.P. (2018). Diversity and Taxonomy of Aliphatic Hydrocarbon Producers. In: Stams, A., Sousa, D. (eds) Biogenesis of Hydrocarbons. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-53114-4_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53114-4_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53114-4

  • Online ISBN: 978-3-319-53114-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics