Skip to main content

Various Techniques to Functionalize Nanofibers

  • Reference work entry
  • First Online:
Handbook of Nanofibers

Abstract

Surface properties of a material control cell adhesion, adsorption, wettability, and colloidal stabilization. The surface functionalization of biomaterials or metals improves the biocompatibility and facilitates the cell attachment. It is established that the fabrication of superhydrophilic and superhydrophobic surface is feasible by surface functionalization. Surface-functionalized materials are found to be suitable to enhance cell material interaction. Hence, various surface functionalization methods carried out using procedures which involved covalent and noncovalent bonds are discussed. However, selection of a suitable functionalization and a reagent based upon the surface chemistry of the material is indispensable. This chapter mainly deals with the various surface functionalization techniques and describes the relevant approaches for activating the surface of the fibers. It provides the basic understanding about the selection of suitable reagent based on the available functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu H, Pan W, Lin D, Li H (2012) Electrospinning of ceramic nanofibers: fabrication, assembly and applications. J Adv Ceram 1(1):2–23

    Article  CAS  Google Scholar 

  2. Xue J, Xie J, Liu W, Xia Y (2017) Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res 50(8):1976–1987. 2017/08/15

    Article  CAS  Google Scholar 

  3. Aruna ST, Balaji LS, Kumar SS, Prakash BS (2017) Electrospinning in solid oxide fuel cells – a review. Renew Sust Energ Rev 67(Suppl C):673–682. 2017/01/01

    Article  CAS  Google Scholar 

  4. Rajendran D, Hussain A, Yip D, Parekh A, Shrirao A, Cho CH (2017) Long-term liver-specific functions of hepatocytes in electrospun chitosan nanofiber scaffolds coated with fibronectin. J Biomed Mater Res A 105(8):2119–2128

    Article  CAS  Google Scholar 

  5. Kim BJ, Cheong H, Choi E-S, Yun S-H, Choi B-H, Park K-S et al (2017) Accelerated skin wound healing using electrospun nanofibrous mats blended with mussel adhesive protein and polycaprolactone. J Biomed Mater Res A 105(1):218–225

    Article  CAS  Google Scholar 

  6. Cheng J, Jun Y, Qin J, Lee S-H (2017) Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 114(Suppl C):121–143. 2017/01/01

    Article  CAS  Google Scholar 

  7. Dobosz KM, Kuo-Leblanc CA, Martin TJ, Schiffman JD (2017) Ultrafiltration membranes enhanced with electrospun nanofibers exhibit improved flux and fouling resistance. Ind Eng Chem Res 56(19):5724–5733. 2017/05/17

    Article  CAS  Google Scholar 

  8. Jana S, Zhang M (2013) Fabrication of 3D aligned nanofibrous tubes by direct electrospinning. J Mater Chem B 1(20):2575–2581

    Article  CAS  Google Scholar 

  9. Qu H, Wei S, Guo Z (2013) Coaxial electrospun nanostructures and their applications. J Mater Chem A 1(38):11513–11528

    Article  CAS  Google Scholar 

  10. Haider A, Haider S, Kang I-K (2015) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem, pp 1–24

    Google Scholar 

  11. Chen Y, Kim H (2009) Preparation of superhydrophobic membranes by electrospinning of fluorinated silane functionalized poly(vinylidene fluoride). Appl Surf Sci 255(15):7073–7077. 2009/05/15/

    Article  CAS  Google Scholar 

  12. Schaub NJ, Le Beux C, Miao J, Linhardt RJ, Alauzun JG, Laurencin D et al (2015) The effect of surface modification of aligned poly-l-lactic acid electrospun fibers on fiber degradation and neurite extension. PLoS One 10(9):e0136780

    Article  CAS  Google Scholar 

  13. Sun X, Cheng L, Zhao J, Jin R, Sun B, Shi Y et al (2014) bFGF-grafted electrospun fibrous scaffolds via poly(dopamine) for skin wound healing. J Mater Chem B 2(23):3636–3645

    Article  CAS  Google Scholar 

  14. Taskin MB, Xu R, Zhao H, Wang X, Dong M, Besenbacher F et al (2015) Poly(norepinephrine) as a functional bio-interface for neuronal differentiation on electrospun fibers. Phys Chem Chem Phys 17(14):9446–9453

    Article  CAS  Google Scholar 

  15. da Costa FFP, Araujo ES, De Oliveira HP et al (2015) Electrospun fibers of enteric polymer for controlled drug delivery. In J Polym Sci 2015:8

    Google Scholar 

  16. Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61(12):1033–1042. 2009/10/05/

    Article  CAS  Google Scholar 

  17. Sharma J, Lizu M, Stewart M, Zygula K, Lu Y, Chauhan R et al (2015) Multifunctional nanofibers towards active biomedical therapeutics. Polymers 7(2):186. https://doi.org/10.3390/polym7020186. PubMed PMID

    Article  CAS  Google Scholar 

  18. Zhu Y, Gao C, Liu X, Shen J (2002) Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules 3(6):1312–1319. 2002/11/01

    Article  CAS  Google Scholar 

  19. Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ (2004) Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: physical, chemical, and theoretical aspects. Biomacromolecules 5(2):463–473. 2004/03/01

    Article  CAS  Google Scholar 

  20. Mandracci P, Mussano F, Rivolo P, Carossa S (2016) Surface treatments and functional coatings for biocompatibility improvement and bacterial adhesion reduction in dental implantology. Coatings 6(1):7. https://doi.org/10.3390/coatings6010007. PubMed PMID

    Article  CAS  Google Scholar 

  21. Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R Rep 36(5):143–206. 2002/03/29

    Article  Google Scholar 

  22. Inagaki N (1996) Plasma surface modification and plasma polymerization. Taylor & Francis, Boca Raton

    Google Scholar 

  23. Lee S-D, Hsiue G-H, Chang PC-T, Kao C-Y (1996) Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials. Biomaterials 17(16):1599–1608. 1996/01/01

    Article  CAS  Google Scholar 

  24. Gupta B, Plummer C, Bisson I, Frey P, Hilborn J (2002) Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials 23(3):863–871. 2002/02/01

    Article  CAS  Google Scholar 

  25. Polini A, Pagliara S, Stabile R, Netti GS, Roca L, Prattichizzo C et al (2010) Collagen-functionalised electrospun polymer fibers for bioengineering applications. Soft Matter 6(8):1668–1674

    Article  CAS  Google Scholar 

  26. Bao Y, Lai C, Zhu Z, Fong H, Jiang C (2013) SERS-active silver nanoparticles on electrospun nanofibers facilitated via oxygen plasma etching. RSC Adv 3(23):8998–9004

    Article  CAS  Google Scholar 

  27. Liu W, Zhan J, Su Y, Wu T, Wu C, Ramakrishna S et al (2014) Effects of plasma treatment to nanofibers on initial cell adhesion and cell morphology. Colloids Surf B: Biointerfaces 113(Suppl C):101–106. 2014/01/01

    Article  CAS  Google Scholar 

  28. Ardeshirylajimi A, Dinarvand P, Seyedjafari E, Langroudi L, Jamshidi Adegani F, Soleimani M (2013) Enhanced reconstruction of rat calvarial defects achieved by plasma-treated electrospun scaffolds and induced pluripotent stem cells. Cell Tissue Res 354(3):849–860

    Article  CAS  Google Scholar 

  29. Chen J-P, Su C-H (2011) Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater 7(1):234–243. 2011/01/01

    Article  CAS  Google Scholar 

  30. He W, Ma Z, Yong T, Teo WE, Ramakrishna S (2005) Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 26(36):7606–7615. 2005/12/01

    Article  CAS  Google Scholar 

  31. Sd V, Tille J-C, Chaabane C, Gurny R, Bochaton-Piallat M-L, Walpoth BH et al (2013) Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Eur J Pharm Biopharm 85(1):78–86. 2013/09/01

    Article  CAS  Google Scholar 

  32. Cheng Q, Komvopoulos K, Li S (2014) Plasma-assisted heparin conjugation on electrospun poly(l-lactide) fibrous scaffolds. J Biomed Mater Res A 102(5):1408–1414

    Article  CAS  Google Scholar 

  33. Baek HS, Park YH, Ki CS, Park J-C, Rah DK (2008) Enhanced chondrogenic responses of articular chondrocytes onto porous silk fibroin scaffolds treated with microwave-induced argon plasma. Surf Coat Technol 202(22):5794–5797. 2008/08/30

    Article  CAS  Google Scholar 

  34. Thorvaldsson A, Edvinsson P, Glantz A, Rodriguez K, Walkenström P, Gatenholm P (2012) Superhydrophobic behaviour of plasma modified electrospun cellulose nanofiber-coated microfibers. Cellulose 19(5):1743–1748

    Article  CAS  Google Scholar 

  35. Dolci LS, Quiroga SD, Gherardi M, Laurita R, Liguori A, Sanibondi P et al (2014) Carboxyl surface functionalization of poly(l-lactic acid) electrospun nanofibers through atmospheric non-thermal plasma affects fibroblast morphology. Plasma Process Polym 11(3):203–213

    Article  CAS  Google Scholar 

  36. Correia DM, Ribeiro C, Sencadas V, Botelho G, Carabineiro SAC, Ribelles JLG et al (2015) Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Prog Org Coat 85:151–158

    Article  CAS  Google Scholar 

  37. Jia J, Duan Y-Y, Yu J, Lu J-W (2008) Preparation and immobilization of soluble eggshell membrane protein on the electrospun nanofibers to enhance cell adhesion and growth. J Biomed Mater Res A 86A(2):364–373

    Article  CAS  Google Scholar 

  38. Martins A, Pinho ED, Faria S, Pashkuleva I, Marques AP, Reis RL et al (2009) Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. Small 5(10):1195–1206

    CAS  Google Scholar 

  39. Yan D, Jones J, Yuan XY, Xu XH, Sheng J, Lee JCM et al (2013) Plasma treatment of electrospun PCL random nanofiber meshes (NFMs) for biological property improvement. J Biomed Mater Res A 101A(4):963–972

    Article  CAS  Google Scholar 

  40. McCord MG, Hwang YJ, Qiu Y, Hughes LK, Bourham MA (2003) Surface analysis of cotton fabrics fluorinated in radio-frequency plasma. J Appl Polym Sci 88(8):2038–2047

    Article  CAS  Google Scholar 

  41. Arjun GN, Menon G, Ramesh P (2014) Plasma surface modification of fibroporous polycarbonate urethane membrane by polydimethyl siloxane: structural characterization, mechanical properties, and in vitro cytocompatibility evaluation. J Biomed Mater Res A 102(4):947–957

    Article  CAS  Google Scholar 

  42. Uygun A, Kiristi M, Oksuz L, Manolache S, Ulusoy S (2011) RF hydrazine plasma modification of chitosan for antibacterial activity and nanofiber applications. Carbohydr Res 346(2):259–265. 2011/02/01

    Article  CAS  Google Scholar 

  43. Zhu Y, Leong MF, Ong WF, Chan-Park MB, Chian KS (2007) Esophageal epithelium regeneration on fibronectin grafted poly(l-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials 28(5):861–868. 2007/02/01

    Article  CAS  Google Scholar 

  44. Sun H, Önneby S (2006) Facile polyester surface functionalization via hydrolysis and cell-recognizing peptide attachment. Polym Int 55(11):1336–1340

    Article  CAS  Google Scholar 

  45. Yuan X, Mak AFT, Yao K (2003) Surface degradation of poly(l-lactic acid) fibres in a concentrated alkaline solution. Polym Degrad Stab 79(1):45–52. 2003/01/01

    Article  CAS  Google Scholar 

  46. Wang Z-G, Wan L-S, Liu Z-M, Huang X-J, Xu Z-K (2009) Enzyme immobilization on electrospun polymer nanofibers: an overview. J Mol Catal B Enzym 56(4):189–195. 2009/04/01/

    Article  CAS  Google Scholar 

  47. Chen W-C, Chen C-H, Tseng H-W, Liu Y-W, Chen Y-P, Lee C-H et al (2017) Surface functionalized electrospun fibrous poly(3-hydroxybutyrate) membranes and sleeves: a novel approach for fixation in anterior cruciate ligament reconstruction. J Mater Chem B 5(3):553–564

    Article  CAS  Google Scholar 

  48. Fu Q, Wang X, Si Y, Liu L, Yu J, Ding B (2016) Scalable fabrication of electrospun nanofibrous membranes functionalized with citric acid for high-performance protein adsorption. ACS Appl Mater Interfaces 8(18):11819–11829. 2016/05/11

    Article  CAS  Google Scholar 

  49. Li L, Hsieh Y-L (2005) Ultra-fine polyelectrolyte fibers from electrospinning of poly(acrylic acid). Polymer 46(14):5133–5139. 2005/06/27

    Article  CAS  Google Scholar 

  50. Baştürk E, Demir S, Danış Ö, Kahraman MV (2013) Covalent immobilization of α-amylase onto thermally crosslinked electrospun PVA/PAA nanofibrous hybrid membranes. J Appl Polym Sci 127(1):349–355

    Article  CAS  Google Scholar 

  51. Kalaoglu-Altan OI, Sanyal R, Sanyal A (2015) “Clickable” polymeric nanofibers through hydrophilic–hydrophobic balance: fabrication of robust biomolecular immobilization platforms. Biomacromolecules 16(5):1590–1597. 2015/05/11

    Article  CAS  Google Scholar 

  52. Zheng J, Liu K, Reneker DH, Becker ML (2012) Post-assembly derivatization of electrospun nanofibers via strain-promoted azide alkyne cycloaddition. J Am Chem Soc 134(41):17274–17277. 2012/10/17

    Article  CAS  Google Scholar 

  53. Fu GD, Xu LQ, Yao F, Zhang K, Wang XF, Zhu MF et al (2009) Smart nanofibers from combined living radical polymerization, “click chemistry”, and electrospinning. ACS Appl Mater Interfaces 1(2):239–243. 2009/02/25

    Article  CAS  Google Scholar 

  54. Kalaoglu-Altan OI, Sanyal R, Sanyal A (2015) Reactive and ‘clickable’ electrospun polymeric nanofibers. Polym Chem 6(18):3372–3381

    Article  CAS  Google Scholar 

  55. Lin F, Yu J, Tang W, Zheng J, Xie S, Becker ML (2013) Postelectrospinning “click” modification of degradable amino acid-based poly(ester urea) nanofibers. Macromolecules 46(24):9515–9525. 2013/12/23

    Article  CAS  Google Scholar 

  56. Farris S, Song J, Huang Q (2010) Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. J Agric Food Chem 58(2):998–1003. 2010/01/27

    Article  CAS  Google Scholar 

  57. Pritchard CD, Arnér KM, Neal RA, Neeley WL, Bojo P, Bachelder E et al (2010) The use of surface modified poly(glycerol-co-sebacic acid) in retinal transplantation. Biomaterials 31(8):2153–2162. 2010/03/01

    Article  CAS  Google Scholar 

  58. Wang Z-G, Ke B-B, Xu Z-K (2007) Covalent immobilization of redox enzyme on electrospun nonwoven poly(acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes: a comprehensive study. Biotechnol Bioeng 97(4):708–720

    Article  CAS  Google Scholar 

  59. Panzavolta S, Gioffrè M, Focarete ML, Gualandi C, Foroni L, Bigi A (2011) Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater 7(4):1702–1709. 2011/04/01

    Article  CAS  Google Scholar 

  60. Mekhail M, Wong KKH, Padavan DT, Wu Y, O’Gorman DB, Wan W (2011) Genipin-cross-linked electrospun collagen fibers. J Biomater Sci Polym Ed 22(17):2241–2259. 2011/01/01

    Article  CAS  Google Scholar 

  61. Jae Suk Y, Yong Jin K, Soo Hwan K, Seung Hwa C (2011) Study on Genipin: a new alternative natural crosslinking agent for fixing heterograft tissue. Korean J Thorac Cardiovasc Surg 44(3):197–207

    Article  Google Scholar 

  62. Torres-Giner S, Gimeno-Alcañiz JV, Ocio MJ, Lagaron JM (2009) Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. ACS Appl Mater Interfaces 1(1):218–223. 2009/01/28

    Article  CAS  Google Scholar 

  63. Kuraishi C, Yamazaki K, Susa Y (2001) Transglutaminase: its utilization in the food industry. Food Rev Int 17(2):221–246. 2001/02/04

    Article  CAS  Google Scholar 

  64. Gauche C, Vieira JTC, Ogliari PJ, Bordignon-Luiz MT (2008) Crosslinking of milk whey proteins by transglutaminase. Process Biochem 43(7):788–794. 2008/07/01

    Article  CAS  Google Scholar 

  65. Zhu Y, Tramper J (2008) Novel applications for microbial transglutaminase beyond food processing. Trends Biotechnol 26(10):559–565. 2008/10/01

    Article  CAS  Google Scholar 

  66. Liu T, Xu J, Chan BP, Chew SY (2012) Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair. J Biomed Mater Res A 100A(1):236–242

    Article  CAS  Google Scholar 

  67. Tillet G, Boutevin B, Ameduri B (2011) Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog Polym Sci 36(2):191–217. 2011/02/01

    Article  CAS  Google Scholar 

  68. Roesler RR, Danielmeier K (2004) Tris-3-(1-aziridino)propionates and their use in formulated products. Prog Org Coat 50(1):1–27. 2004/06/01

    Article  CAS  Google Scholar 

  69. Hermanson GT (2008) Functional targets, Chapter 1. In: Bioconjugate techniques, 2nd edn. Academic, New York, pp 1–168

    Google Scholar 

  70. Tomihata K, Ikada Y (1997) Crosslinking of hyaluronic acid with glutaraldehyde. J Polym Sci A Polym Chem 35(16):3553–3559

    Article  CAS  Google Scholar 

  71. Zhu B-K, Wei X-Z, Xiao L, Xu Y-Y, Geckeler KE (2006) Preparation and properties of hyperbranched poly(amine-ester) films using acetal cross-linking units. Polym Int 55(1):63–70

    Article  CAS  Google Scholar 

  72. Rudra R, Kumar V, Kundu PP (2015) Acid catalysed cross-linking of poly vinyl alcohol (PVA) by glutaraldehyde: effect of crosslink density on the characteristics of PVA membranes used in single chambered microbial fuel cells. RSC Adv 5(101):83436–83447

    Article  CAS  Google Scholar 

  73. Olde Damink LHH, Dijkstra PJ, Van Luyn MJA, Van Wachem PB, Nieuwenhuis P, Feijen J (1995) Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J Mater Sci Mater Med 6(8):460–472

    Article  CAS  Google Scholar 

  74. Versace D-L, Ramier J, Grande D, Andaloussi SA, Dubot P, Hobeika N et al (2013) Versatile photochemical surface modification of biopolyester microfibrous scaffolds with photogenerated silver nanoparticles for antibacterial activity. Adv Healthc Mater 2(7):1008–1018

    Article  CAS  Google Scholar 

  75. Matyjaszewski K, Spanswick J (2005) Controlled/living radical polymerization. Mater Today 8(3):26–33. 2005/03/01

    Article  CAS  Google Scholar 

  76. Demirci S, Celebioglu A, Uyar T (2014) Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydr Polym 113(Suppl C):200–207. 2014/11/26

    Article  CAS  Google Scholar 

  77. Jia W, Wu Y, Huang J, An Q, Xu D, Wu Y et al (2010) Poly(ionic liquid) brush coated electrospun membrane: a useful platform for the development of functionalized membrane systems. J Mater Chem 20(39):8617–8623

    Article  CAS  Google Scholar 

  78. Ameringer T, Ercole F, Tsang KM, Coad BR, Hou X, Rodda A et al (2013) Surface grafting of electrospun fibers using ATRP and RAFT for the control of biointerfacial interactions. Biointerphases 8(1):16

    Article  CAS  Google Scholar 

  79. Rodda AE, Ercole F, Glattauer V, Nisbet DR, Healy KE, Dove AP et al (2016) Controlling integrin-based adhesion to a degradable electrospun fibre scaffold via SI-ATRP. J Mater Chem B 4(45):7314–7322

    Article  CAS  Google Scholar 

  80. Yang J, Bei J, Wang S (2002) Enhanced cell affinity of poly (d,l-lactide) by combining plasma treatment with collagen anchorage. Biomaterials 23(12):2607–2614. 2002/06/01

    Article  CAS  Google Scholar 

  81. Wyrwa R, Finke B, Rebl H, Mischner N, Quaas M, Schaefer J et al (2011) Design of plasma surface-activated, electrospun polylactide non-wovens with improved cell acceptance. Adv Eng Mater 13(5):B165–BB71

    Article  CAS  Google Scholar 

  82. Abrigo M, Kingshott P, McArthur SL (2015) Bacterial response to different surface chemistries fabricated by plasma polymerization on electrospun nanofibers. Biointerphases 10(4):04A301

    Article  CAS  Google Scholar 

  83. Y-m L, Li Q, H-h L, Cheng H-h YJ, Guo Z-x (2017) Antibacterial thermoplastic polyurethane electrospun fiber mats prepared by 3-aminopropyltriethoxysilane-assisted adsorption of Ag nanoparticles. Chin J Polym Sci 35(6):713–720

    Article  CAS  Google Scholar 

  84. Jassal M, Sengupta S, Bhowmick S (2015) Functionalization of electrospun poly(caprolactone) fibers for pH-controlled delivery of doxorubicin hydrochloride. J Biomater Sci Polym Ed 26(18):1425–1438. 2015/12/12

    Article  CAS  Google Scholar 

  85. Xiang Y, Lu S, Jiang SP (2012) Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors. Chem Soc Rev 41(21):7291–7321

    Article  CAS  Google Scholar 

  86. Müller K, Quinn JF, Johnston APR, Becker M, Greiner A, Caruso F (2006) Polyelectrolyte functionalization of electrospun fibers. Chem Mater 18(9):2397–2403. 2006/05/01

    Article  CAS  Google Scholar 

  87. Chen L, Bromberg L, Lee JA, Zhang H, Schreuder-Gibson H, Gibson P et al (2010) Multifunctional electrospun fabrics via layer-by-layer electrostatic assembly for chemical and biological protection. Chem Mater 22(4):1429–1436. 2010/02/23

    Article  CAS  Google Scholar 

  88. Saetia K, Schnorr JM, Mannarino MM, Kim SY, Rutledge GC, Swager TM et al (2014) Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications. Adv Funct Mater 24(4):492–502

    Article  CAS  Google Scholar 

  89. Hammond PT (2012) Building biomedical materials layer-by-layer. Mater Today 15(5):196–206. 2012/05/01

    Article  CAS  Google Scholar 

  90. Gao Y, Wang Y, Wang Y, Cui W (2016) Fabrication of gelatin-based electrospun composite fibers for anti-bacterial properties and protein adsorption. Mar Drugs 14(10):192. https://doi.org/10.3390/md14100192. PubMed PMID

    Article  CAS  Google Scholar 

  91. Esfahani H, Prabhakaran MP, Salahi E, Tayebifard A, Keyanpour-Rad M, Rahimipour MR et al (2015) Protein adsorption on electrospun zinc doped hydroxyapatite containing nylon 6 membrane: kinetics and isotherm. J Colloid Interface Sci 443(Suppl C):143–152. 2015/04/01

    Article  CAS  Google Scholar 

  92. Lan T, Shao Z-Q, Wang J-Q, Gu M-J (2015) Fabrication of hydroxyapatite nanoparticles decorated cellulose triacetate nanofibers for protein adsorption by coaxial electrospinning. Chem Eng J 260(Suppl C):818–825. 2015/01/15

    Article  CAS  Google Scholar 

  93. Regis S, Youssefian S, Jassal M, Phaneuf MD, Rahbar N, Bhowmick S (2014) Fibronectin adsorption on functionalized electrospun polycaprolactone scaffolds: experimental and molecular dynamics studies. J Biomed Mater Res A 102(6):1697–1706

    Article  CAS  Google Scholar 

  94. Porcar I, Cottet H, Gareil P, Tribet C (1999) Association between protein particles and long amphiphilic polymers: effect of the polymer hydrophobicity on binding isotherms. Macromolecules 32(12):3922–3929. 1999/06/01

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakthivel Nagarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nagarajan, S., Balme, S., Narayana Kalkura, S., Miele, P., Bohatier, C.P., Bechelany, M. (2019). Various Techniques to Functionalize Nanofibers. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-53655-2_31

Download citation

Publish with us

Policies and ethics