Skip to main content

Cellulose Nanofibers: Fabrication and Surface Functionalization Techniques

  • Reference work entry
  • First Online:
Handbook of Nanofibers

Abstract

Cellulose fibers which consist of a bundle of stretched cellulose chain molecules with cellulose fibril are the smallest structural unit of plant fiber. These elementary fibrils or nanofibers are about 2–20 nm in diameter and a few micrometers in length. Cellulose nanofiber (CNF) is the world’s most advanced bio-nanomaterial. As the cellulose is the most abundant, renewable, and sustainable biopolymer on earth, it creates low environmental impact in its production and disposal. In this chapter, the unique properties of CNFs were introduced including stiffness, biodegradability, biocompatibility, and ability to form a strong entangled nanoporous network, thermal properties, and swelling in water and water absorptivity. Different fabrication techniques including physical methods (e.g., mechanical refining), chemical methods (treatment with acids and alkalis), and biological methods (treatment with specific bacteria and enzymes) were discussed. The chemical grafting on the CNFs and deposition of nanoparticles on nanofiber surface were described. Finally, the future prospects and challenges of CNFs were presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Samyn P, Barhoum A. Engineered nanomaterials for papermaking industry. Fundamentals of Nanoparticles 245–277

    Google Scholar 

  2. Sindhu KA, Prasanth R, Thakur VK (2014) Medical applications of cellulose and its derivatives: present and future. Nanocellulose Polymer Nanocomposites: Fundamentals and Applications 437–477

    Google Scholar 

  3. Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS, Sulaiman A (2015) A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Appl Biochem Biotechnol 175(4):1817–1842

    Article  CAS  Google Scholar 

  4. Piotrowski S, Carus M (2011) Multi-criteria evaluation of lignocellulosic niche crops for use in biorefinery processes. Nova-Institut GmbH, Hürth, Germany, 5

    Google Scholar 

  5. Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811

    Article  CAS  Google Scholar 

  6. Tarrés Q, Boufi S, Mutjé P, Delgado-Aguilar M (2017) Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of nanopapers: morphological, optical, thermal and mechanical properties. Cellulose 24(9):3943–3954

    Article  CAS  Google Scholar 

  7. Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3(3):929–980

    Google Scholar 

  8. Tejado A, Alam MN, Antal M, Yang H, van de Ven TGM (2012) Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19(3):831–842

    Google Scholar 

  9. Lee KY, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites †. Macromol Biosci 14(1):10–32

    Article  CAS  Google Scholar 

  10. Wei H, Rodriguez K, Renneckar S, Vikesland P (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci Nano 1(4):302–316

    Article  CAS  Google Scholar 

  11. de Morais Teixeira E, Corrêa AC, Manzoli A, de Lima Leite F, de Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595–606

    Article  CAS  Google Scholar 

  12. Zhu H, Zhu S, Jia Z, Parvinian S, Li Y, Vaaland O, Hu L, Li T (2015) Anomalous scaling law of strength and toughness of cellulose nanopaper. Proc Natl Acad Sci U S A 112(29):8971–8976

    Article  CAS  Google Scholar 

  13. del Valle LJ, Díaz A, Puiggalí J (2017) Hydrogels for biomedical applications: cellulose, chitosan, and protein/peptide derivatives. Gels 3(3):27

    Article  CAS  Google Scholar 

  14. Kaushik M, Moores A (2016) Green chemistry review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis †. Green Chem 18(3):622–637

    Article  CAS  Google Scholar 

  15. Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73(3):371–377

    Article  CAS  Google Scholar 

  16. Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315

    Article  CAS  Google Scholar 

  17. Zhang J, Elder TJ, Pu Y, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohydr Polym 69(3):607–611

    Article  CAS  Google Scholar 

  18. Barhoum A, Samyn P, Öhlund T, Dufresne A (2017) Review of recent research on flexible multifunctional nanopapers. Nanoscale 9(40):15181–15205

    Article  CAS  Google Scholar 

  19. Brhoum A, Dufresne A, Ohlund T, Samyn P (2017) Review of recent research on flexible multifunctional nanopapers: nanocellulose, electrospun nanofiber, and carbon-based nanopapers. Nanoscale

    Google Scholar 

  20. Xu Z, Li J, Zhou H, Jiang X, Yang C, Wang F, Pan Y, Li N, Li X, Shi L (2016) Morphological and swelling behavior of cellulose nanofiber (CNF)/poly(vinyl alcohol) (PVA) hydrogels: poly(ethylene glycol) (PEG) as porogen. RSC Adv 6(49):43626–43633

    Article  CAS  Google Scholar 

  21. Liu Q, Smalyukh II (2017) Liquid crystalline cellulose-based nematogels. Sci Adv 3(8):e1700981

    Article  CAS  Google Scholar 

  22. Abe K, Yano H (2011) Formation of hydrogels from cellulose nanofibers. Carbohydr Polym 85(4):733–737

    Article  CAS  Google Scholar 

  23. Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci B Polym Phys 33(11):1647–1651

    Article  CAS  Google Scholar 

  24. Cetin NS, Tingaut P, Özmen N, Henry N, Harper D, Dadmun M, Sebe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9(10):997–1003

    Article  CAS  Google Scholar 

  25. Ansari F, Galland S, Johansson M, Plummer CJG, Berglund LA (2014) Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Compos A: Appl Sci Manuf 63(63):35–44

    Article  CAS  Google Scholar 

  26. Samyn P, Barhoum A, Öhlund T, Dufresne A (2018) Nanoparticles and nanostructured materials in papermaking. J Mater Sci 53(1):146–184

    Google Scholar 

  27. Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18(2):433–442

    Article  CAS  Google Scholar 

  28. Song JW, Chen CJ, Yang Z, Kuang YD, Li T, Li YJ, Huang H, Kierzewski I, Liu BY, He SM, Gao TT, Yuruker SU, Gong A, Yang B, Hu LB (2017) Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 12(1):140–147

    Google Scholar 

  29. Yang W, Zhao Z, Wu K, Huang R, Liu T, Jiang H, Chen F, Fu Q (2017) Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J Mater Chem C 5(15):3748–3756

    Article  CAS  Google Scholar 

  30. Yang L, Mukhopadhyay A, Jiao Y, Yong Q, Chen L, Xing Y, Hamel J, Zhu H (2017) Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS2. Nanoscale 9(32):11452

    Article  CAS  Google Scholar 

  31. Fan B, Chen S, Yao Q, Sun Q, Jin C (2017) Fabrication of cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation. Materials 10(3):311

    Article  CAS  Google Scholar 

  32. Koga H, Nogi M, Komoda N, Nge TT, Sugahara T, Suganuma K (2014) Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. Npg Asia Materials 6(3):e93

    Article  CAS  Google Scholar 

  33. Nogi M, Karakawa M, Komoda N, Yagyu H, Nge TT (2015) Transparent conductive nanofiber paper for foldable solar cells. Sci Rep 5:17254

    Article  CAS  Google Scholar 

  34. Liu Q, Jing S, Wang S, Zhuo H, Zhong L, Peng X, Sun R (2016) Flexible nanocomposites with ultrahigh specific areal capacitance and tunable properties based on a cellulose derived nanofiber-carbon sheet framework coated with polyaniline. J Mater Chem A 4(34):13352–13362

    Article  CAS  Google Scholar 

  35. Wang F, Kim H-J, Park S, Kee C-D, Kim S-J, Oh I-K (2016) Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network. Compos Sci Technol 128:33–40

    Article  CAS  Google Scholar 

  36. Jonoobi M, Harun J, Tahir PM, Shakeri A, SaifulAzry S, Makinejad MD (2011) Physicochemical characterization of pulp and nanofibers from kenaf stem. Mater Lett 65(7):1098–1100

    Article  CAS  Google Scholar 

  37. Saleh MHSDE, Muhamad MDII, Mamat SNH (2012) In: Cellulose nanofiber isolation and its fabrication into bio-polymer-a review. International conference on agricultural and food engineering for life (Cafei2012), p 28

    Google Scholar 

  38. Jiang F, Hsieh Y-L (2013) Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing–thawing. J Mater Chem A 2(2):350–359

    Article  Google Scholar 

  39. Xu X, Zhou J, Xin Y, Lubineau G, Ma Q, Jiang L (2017) Alcohol recognition by flexible, transparent and highly sensitive graphene-based thin-film sensors. Sci Rep 7(1):4317

    Article  CAS  Google Scholar 

  40. Barhoum A, Li H, Chen M, Cheng L, Yang W, Dufresne A. Emerging applications of cellulose nanofibers. Handbook of Nanofibers 1–26

    Google Scholar 

  41. He Z, Zhang X, Batchelor W (2016) Cellulose nanofibre aerogel filter with tuneable pore structure for oil/water separation and recovery. RSC Adv 6(26):21435–21438

    Article  CAS  Google Scholar 

  42. Torres FG, Commeaux S, Troncoso OP (2012) Biocompatibility of bacterial cellulose based biomaterials. J Funct Biomater 3(4):864–878

    Article  CAS  Google Scholar 

  43. Khan S, Ulislam M, Ikram M, Ullah MW, Israr M, Subhan F, Kim Y, Jang JH, Yoon S, Park JK (2016) Three-dimensionally microporous and highly biocompatible bacterial cellulose–gelatin composite scaffolds for tissue engineering applications. RSC Adv 6(112):110840–110849

    Article  CAS  Google Scholar 

  44. Hirayama K, Okitsu T, Teramae H, Kiriya D, Onoe H, Takeuchi S (2013) Cellular building unit integrated with microstrand-shaped bacterial cellulose. Biomaterials 34(10):2421–2427

    Article  CAS  Google Scholar 

  45. Araújo IMS, Silva RR, Pacheco G, Lustri WR, Tercjak A, Gutierrez J, Júnior JRS, Azevedo FHC, Figuêredo GS, Vega ML, Ribeiro SJL, Barud HS (2018) Hydrothermal synthesis of bacterial cellulose–copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydr Polym 179:341–349

    Article  CAS  Google Scholar 

  46. Shibakami M, Tsubouchi G, Nakamura M, Hayashi M (2013) Polysaccharide nanofiber made from euglenoid alga. Carbohydr Polym 93(2):499–505

    Article  CAS  Google Scholar 

  47. Frenot A, Henriksson MW, Walkenström P (2007) Electrospinning of cellulose-based nanofibers. J Appl Polym Sci 103(3):1473–1482

    Article  CAS  Google Scholar 

  48. Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials (Basel, Switzerland) 6(5):1745

    Article  CAS  Google Scholar 

  49. Oksman K, Mathew AP, Bismarck A, Rojas O, Sain M, Oksman K, Rojas O (1986) Handbook of green materials processing technologies, properties and applications (in 4 volumes).Neuroendocrinology 44(44):331–337

    Google Scholar 

  50. Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sust Energ Rev 41:402–412

    Article  CAS  Google Scholar 

  51. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1):102–107

    Article  CAS  Google Scholar 

  52. Abe K, Nakatsubo F, Yano H (2009) High-strength nanocomposite based on fibrillated chemi-thermomechanical pulp. Compos Sci Technol 69(14):2434–2437

    Article  CAS  Google Scholar 

  53. Soni B, Hassan el B, Mahmoud B (2015) Chemical isolation and characterization of different cellulose nanofibers from cotton stalks. Carbohydr Polym 134:581–589

    Article  CAS  Google Scholar 

  54. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) In: Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp; (United States), ITT Rayonier Inc., Shelton, WA

    Google Scholar 

  55. Zhang L, Tsuzuki T, Wang X (2015) Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose 22(3):1729–1741

    Article  CAS  Google Scholar 

  56. Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25

    Article  CAS  Google Scholar 

  57. Afra E, Yousefi H, Hadilam MM, Nishino T (2013) Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps. Carbohydr Polym 97(2):725–730

    Article  CAS  Google Scholar 

  58. Tangnu SK (2014) Process development for ethanol production based on enzymatic hydrolysis of cellulosic biomass. Process Biochem 17(3):36

    Google Scholar 

  59. Araki J, Wada M, Kuga S, Okano T (2000) Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir 16(6):2413–2415

    Article  CAS  Google Scholar 

  60. Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stab 95(8):1394–1398

    Article  CAS  Google Scholar 

  61. Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37:20–28

    CAS  Google Scholar 

  62. Delgado-Aguilar M, Tovar IG, Tarrés Q, Alcalá M, Pèlach MÀ, Mutjé P (2015) Approaching a low-cost production of cellulose nanofibers for papermaking applications. Bioresources 10(3):5345–5355

    CAS  Google Scholar 

  63. Qua EH, Hornsby PR, Sharma HSS, Lyons G, McCall RD (2009) Preparation and characterization of poly(vinyl alcohol) nanocomposites made from cellulose nanofibers. J Appl Polym Sci 113(4):2238–2247

    Article  CAS  Google Scholar 

  64. Zhao Y, Moser C, Lindstrom ME, Henriksson G, Li J (2017) Cellulose nanofibers from softwood, hardwood, and tunicate: preparation-structure-film performance interrelation. ACS Appl Mater Interfaces 9(15):13508–13519

    Article  CAS  Google Scholar 

  65. Abdulkhani A, Hosseinzadeh J, Ashori A, Dadashi S, Takzare Z (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73–79

    Article  CAS  Google Scholar 

  66. Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(8):3434–3441

    Article  CAS  Google Scholar 

  67. Hayashi N, Kondo T, Ishihara M (2005) Enzymatically produced nano-ordered short elements containing cellulose I β crystalline domains. Carbohydr Polym 61(2):191–197

    Article  CAS  Google Scholar 

  68. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  Google Scholar 

  69. Shirkavand E, Baroutian S, Gapes DJ, Young BR (2017) Pretreatment of radiata pine using two white rot fungal strains Stereum hirsutum and Trametes versicolor. Energy Convers Manag 142:13–19

    Article  CAS  Google Scholar 

  70. George J, Ramana KV, Bawa AS (2011) Siddaramaiah, bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48(1):50–57

    Article  CAS  Google Scholar 

  71. Castro C, Zuluaga R, Putaux J-L, Caro G, Mondragon I, Gañán P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym 84(1):96–102

    Article  CAS  Google Scholar 

  72. Sari̇oglu OF, Yasa O, Celebi̇oglu A, Uyar T, Teki̇nay T (2013) Efficient ammonium removal from aquatic environments by Acinetobacter calcoaceticus STB1 immobilized on an electrospun cellulose acetate nanofibrous web. Green Chem 15(9):2566–2572

    Article  CAS  Google Scholar 

  73. Ji S, Hyun BG, Kim K, Sang YL, Kim SH, Kim JY, Song MH, Park JU (2016) Photo-patternable and transparent films using cellulose nanofibers for stretchable origami electronics. NPG Asia Mater 8(8):e299

    Article  CAS  Google Scholar 

  74. Lam E, Male KB, Chong JH, Leung ACW, Luong JHT (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 30(5):283

    Article  CAS  Google Scholar 

  75. Kim DY, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9(3–4):361–367

    Article  CAS  Google Scholar 

  76. Martinez-Manez R, Sancenon F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. ChemInform 103(11):4419

    CAS  Google Scholar 

  77. Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45(5):1569–1575

    Article  CAS  Google Scholar 

  78. Jin C, Yan R, Huang J (2011) Cellulose substance with reversible photo-responsive wettability by surface modification. J Mater Chem 21(43):17519–17525

    Article  CAS  Google Scholar 

  79. Lu T, Jiang M, Jiang Z, Hui D, Wang Z, Zhou Z (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos Part B 51:28–34

    Article  CAS  Google Scholar 

  80. Syverud K, Xhanari K, Chinga-Carrasco G, Yu Y, Stenius P (2011) Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. J Nanopart Res 13(2):773–782

    Article  CAS  Google Scholar 

  81. Lars Wågberg, ; Gero Decher; Magnus Norgren, ; Tom Lindström; Mikael Ankerfors, A.; Axnäs, K., The Build-Up of Polyelectrolyte Multilayers of Microfibrillated Cellulose and Cationic Polyelectrolytes. Langmuir 2008, 24 (3), 784

    Article  CAS  Google Scholar 

  82. Jin C, Jiang Y, Niu T, Huang J (2012) Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification. J Mater Chem 22(25):12562–12567

    Article  CAS  Google Scholar 

  83. Martínez-Máñez R, Sancenón F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev:4419–4476

    Google Scholar 

  84. Li Z, Yao C, Wang F, Cai Z, Wang X (2014) Cellulose nanofiber-templated three-dimension TiO2 hierarchical nanowire network for photoelectrochemical photoanode. Nanotechnology 25(50):504005

    Article  CAS  Google Scholar 

  85. Díez I, Eronen P, Österberg M, Linder MB, Ikkala O, Ras RH (2011) Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity. Macromol Biosci 11(9):1185–1191

    Article  CAS  Google Scholar 

  86. Morales-Narváez E, Golmohammadi H, Naghdi T, Yousefi H, Kostiv U, Horák D, Pourreza N, Merkoçi A (2015) Nanopaper as an Optical Sensing Platform. ACS Nano 9(7):7296–7305

    Article  CAS  Google Scholar 

  87. Cai H, Mu W, Liu W, Zhang X, Deng Y (2015) Sol–gel synthesis highly porous titanium dioxide microspheres with cellulose nanofibrils-based aerogel templates. Inorg Chem Commun 51(51):71–74

    Article  CAS  Google Scholar 

  88. Nguyen HL, Dong SH (2016) Mussel-inspired anisotropic nanocellulose and silver nanoparticle composite with improved mechanical properties, electrical conductivity and antibacterial activity. Polymers 8(3):102

    Article  CAS  Google Scholar 

  89. Olsson RT, Azizi Samir MA, Salazaralvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5(8):584

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed Barhoum or Haoyi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, K., Barhoum, A., Xiaoqing, C., Li, H., Samyn, P. (2019). Cellulose Nanofibers: Fabrication and Surface Functionalization Techniques. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-53655-2_58

Download citation

Publish with us

Policies and ethics