Skip to main content

MiRImpact as a Methodological Tool for the Analysis of MicroRNA at the Level of Molecular Pathways

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Intracellular molecular pathways (IMPs) involve multiple gene products implicated in certain biological functions. The best-known IMPs are metabolic pathways, signaling pathways, DNA repair pathways, and cytoskeleton reorganization pathways. The pathway-level of analysis in molecular biology provides a number of advantages compared to the analysis of single genes. First of all, IMPs are more stable biomarkers. This can be explained by the fact that most frequently several or even many individual gene products are involved in a single elementary biological process. For example, the members of RAF family or regulatory protein kinases can be all involved in the same biological process of signal transduction, by acting in an interchangeable way as the MAP kinase kinase kinases downstream to the RAS proteins. The RAS family, in turn, consists of many proteins that may exert basically the same functions, and so on. A variation in the expression of a single family member is hard to interpret, whereas the pathway level of analysis enables obtaining an integral figure for all the nodes and family members. Secondly, the pathway level of data analysis makes it possible to significantly reduce the experimental error of measuring gene expression. This allows to reduce or even eliminate the batch effects and to compare the data obtained using different experimental platforms. Several analytic approaches have been published to digest the mRNA or proteomic data at the level of IMPs, but an approach crosslinking the changes in microRNA (miR) profiles with the activation of molecular pathways was missing. Recently, we proposed a bioinformatic method termed MiRImpact, which enables to link the high-throughput miR expression data with the estimated outcome on the regulation of molecular pathways. MiRImpact was used to establish interactomic signatures for hundreds of molecular pathways, specific to stem cell differentiation, cancer progression, and cytomegalovirus infection. Of note, the impact of miRs appeared orthogonal to pathway regulation at the mRNA level, which stresses the importance of combining all available levels of gene regulation for building more objective models of intracellular molecular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AI:

Cells after infection

BC:

Bladder cancer

HS:

Cells highly sensitive to HCMV infection

IMP:

Intracellular molecular pathway

LS:

Cells low sensitive to HCMV infection

miPAS:

Pathway activation strength, calculated using microRNA expression data

NGS:

Next-generation sequencing

PAS:

Pathway activation strength, calculated using mRNA or protein expression data

riboPAS:

Pathway activation strength, calculated using ribosome profiling gene expression data

WI:

Cells without infection

References

  • Afsari B, Geman D, Fertig EJ (2014) Learning dysregulated pathways in cancers from differential variability analysis. Cancer Informat 13:61–67

    Google Scholar 

  • Aliper A, Belikov AV et al (2016) In search for geroprotectors: in silico screening and in vitro validation of signalome-level mimetics of young healthy state. Aging 8:2127–2152

    Article  CAS  Google Scholar 

  • Aliper AM, Frieden-Korovkina VP et al (2014) Interactome analysis of myeloid-derived suppressor cells in murine models of colon and breast cancer. Oncotarget 5:11345–11353

    Article  Google Scholar 

  • Artcibasova AV, Korzinkin MB et al (2016) MiRImpact, a new bioinformatic method using complete microRNA expression profiles to assess their overall influence on the activity of intracellular molecular pathways. Cell Cycle 5:689–698

    Article  Google Scholar 

  • Bauer-Mehren A, Furlong LI, Sanz F (2009) Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol Syst Biol 5:290

    Article  Google Scholar 

  • Blagosklonny MV (2011) The power of chemotherapeutic engineering: arresting cell cycle and suppressing senescence to protect from mitotic inhibitors. Cell Cycle 10:2295–2298

    Article  CAS  Google Scholar 

  • Blagosklonny MV (2013) MTOR-driven quasi-programmed aging as a disposable soma theory: blind watchmaker vs. intelligent designer. Cell Cycle 12:1842–1847

    Article  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA et al (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  CAS  Google Scholar 

  • Borisov N, Aksamitiene E et al (2009) Systems-level interactions between insulin-EGF networks amplify mitogenic signaling. Mol Syst Biol 5:256

    Article  Google Scholar 

  • Borisov NM, Chistopolsky AS et al (2008) Domain-oriented reduction of rule-based network models. IET Syst Biol 2:342–351

    Article  CAS  Google Scholar 

  • Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9:297–308

    Article  CAS  Google Scholar 

  • Buzdin AA, Zhavoronkov AA et al (2014a) Oncofinder, a new method for the analysis of intracellular signaling pathway activation using transcriptomic data. Front Genet 5:55

    Article  Google Scholar 

  • Buzdin AA, Zhavoronkov AA et al (2014b) The Oncofinder algorithm for minimizing the errors introduced by the high-throughput methods of transcriptome analysis. Front Mol Biosci 1:8

    Article  Google Scholar 

  • Buzdin AA, Artcibasova AV et al (2016) Early stage of cytomegalovirus infection suppresses host microRNA expression regulation in human fibroblasts. Cell Cycle 15:3378–3389

    Article  CAS  Google Scholar 

  • Conzelmann H, Saez-Rodriguez J et al (2006) A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks. BMC Bioinformatics 7:34

    Article  Google Scholar 

  • Croft D, Mundo AF et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477

    Article  CAS  Google Scholar 

  • Daniels BC, Chen YL et al (2008) Sloppiness, robustness, and evolvability in systems biology. Curr Opin Biotechnol 19:389–395

    Article  CAS  Google Scholar 

  • Demidenko ZN, Blagosklonny MV (2011) The purpose of the HIF-1/PHD feedback loop: to limit mTOR-induced HIF-1α. Cell Cycle 10:1557–1562

    Article  CAS  Google Scholar 

  • Disanza A, Frittoli E et al (2009) Endocytosis and spatial restriction of cell signaling. Mol Oncol 3:280–296

    Article  CAS  Google Scholar 

  • Elkon R, Vesterman R et al (2008) SPIKE- a database, visualization and analysis tool of cellular signaling pathways. BMC Bioinformatics 9:110

    Article  Google Scholar 

  • Filteau M, Diss G, Torres-Quiroz F, Dube AK, Schraffl A, Bachmann VA, Gagnon-Arsenault I et al (2015) Systematic identification of signal integration by protein kinase A. Proc Natl Acad Sci 112(14):4501–4506. https://doi.org/10.1073/pnas.1409938112

    Article  CAS  PubMed  Google Scholar 

  • Griesinger AM, Birks DK et al (2013) Characterization of distinct immunophenotypes across pediatric brain tumor types. J Immunol 191(9):4880–4888

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  Google Scholar 

  • Ho JWK, Stefani M et al (2008) Differential variability analysis of gene expression and its application to human diseases. Bioinformatics 24:i390–i398

    Article  CAS  Google Scholar 

  • Hsu SD, Tseng YT et al (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-TARGET INTERACTIONS. Nucleic Acids Res 42:D78–D85

    Article  CAS  Google Scholar 

  • Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8:e1002375

    Article  CAS  Google Scholar 

  • Kholodenko BN, Demin OV et al (1999) Quantification of short term signaling by the epidermal growth factor receptor. J Biol Chem 274:30169–30181

    Article  CAS  Google Scholar 

  • Kholodenko BN, Kiyatkin A et al (2002) Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. PNAS 99:12841–12846

    Article  CAS  Google Scholar 

  • Kiyatkin A, Aksamitiene A et al (2006) Scaffolding protein Grb2-associated binder 1 sustains epidermal growth factor-induced mitogenic and survival signaling by multiple positive feedback loops. J Biol Chem 281:19925–19938

    Article  CAS  Google Scholar 

  • Kulesh DA, Clive DR et al (1987) Identification of interferon-modulated proliferation-related cDNA sequences. PNAS 84:8453–8457

    Article  CAS  Google Scholar 

  • Kuzmina NB, Nikolay MM (2011) Handling complex rule-based models of mitogenic cell signaling (on the example of ERK activation upon EGF stimulation). Int Proc Chem Biol Environ Eng 5:76–82

    Google Scholar 

  • Lebedev TD, Spirin PV et al (2015) Receptor tyrosine kinase KIT may regulate expression of genes involved in spontaneous regression of neuroblastoma. Mol Biol 49:1052–1055

    CAS  Google Scholar 

  • Lezhnina K, Kovalchuk O et al (2014) Novel robust biomarkers for human bladder cancer based on activation of intracellular signaling pathways. Oncotarget 5:9022–9032

    Article  Google Scholar 

  • Love ML, Huber W, Anders A (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  Google Scholar 

  • Makarev E, Cantor C et al (2014) Pathway activation profiling reveals new insights into age-related macular degeneration and provides avenues for therapeutic interventions. Aging 6:1064–1075

    Article  Google Scholar 

  • Makarev E, Izumchenko E et al (2016) Common pathway signature in lung and liver fibrosis. Cell Cycle 15:1667–1673

    Article  CAS  Google Scholar 

  • Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166

    Article  CAS  Google Scholar 

  • Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185

    Article  CAS  Google Scholar 

  • Mathivanan S, Periaswamy B et al (2006) An evaluation of human protein-protein interaction data in the public domain. BMC Bioinformatics 7(Suppl 5):S19

    Article  Google Scholar 

  • Mitrea C, Taghavi Z et al (2013) Methods and approaches in the topology-based analysis of biological pathways. Front Physiol 4:278

    Article  Google Scholar 

  • Nakaya A, Katayama T et al (2013) KEGG OC: a large-scale automatic construction of taxonomy-based ortholog clusters. Nucleic Acids Res 41:D353–DS57

    Article  CAS  Google Scholar 

  • Nikitin A, Egorov S et al (2003) Pathway Studio – the analysis and navigation of molecular networks. Bioinformatics 19:2155–2157

    Article  CAS  Google Scholar 

  • Olsvik O, Wahlberg J et al (1993) Use of automated sequencing of polymerase chain reaction-generated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae O1 strains. J Clin Microbiol 31:22–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozerov IV, Lezhnina LV et al (2016) In silico pathway activation network decomposition analysis (iPANDA) as a method for biomarker development. Nat Commun 7:13427

    Article  CAS  Google Scholar 

  • Ram DR, Ilyukha V et al (2016) Balance between short and long isoforms of cFLIP regulates FAS-mediated apoptosis in vivo. PNAS 113:1606–1611

    Article  CAS  Google Scholar 

  • Shepelin D, Korzinkin M et al (2016) Molecular pathway activation features linked with transition from normal skin to primary and metastatic melanomas in human. Oncotarget 7:656–670

    Article  Google Scholar 

  • Sonnenschein C, Soto AM (2013) The aging of the 2000 and 2011 Hallmarks of Cancer reviews: a critique. J Biosci 38(3):651–663

    Article  CAS  Google Scholar 

  • Spirin PV, Lebedev TD et al (2014) Silencing AML1-ETO gene expression leads to simultaneous activation of both pro-apoptotic and proliferation signaling. Leukemia 28:2222–2228

    Article  CAS  Google Scholar 

  • Tian L, Greenberg SA et al (2005) Discovering statistically significant pathways in expression profiling studies. PNAS 102:13544–13549

    Article  CAS  Google Scholar 

  • UniProt Consortium (2011) Ongoing and future developments at the universal protein resource. Nucleic Acids Res 39:D214–DD19

    Article  Google Scholar 

  • Vergoulis T, Vlachos IS et al (2012) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40:D222–D229

    Article  CAS  Google Scholar 

  • Vermeulen K, van Bockstaele DR, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36:131–149

    Article  CAS  Google Scholar 

  • Vivar JC, Pemu P et al (2013) Redundancy control in pathway databases (ReCiPa): an application for improving gene-set enrichment analysis in omics studies and ‘big data’ biology. Omics J Integr Biol 17:414–422

    Article  CAS  Google Scholar 

  • Zeeberg BR, Feng W et al (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4:R28

    Article  Google Scholar 

  • Zhang J, Li J, Deng HW (2009) Identifying gene interaction enrichment for gene expression data. PLoS One 4:e8064

    Article  Google Scholar 

  • Zhavoronkov A, Buzdin AA et al (2014) Signaling pathway cloud regulation for in silico screening and ranking of the potential geroprotective drugs. Front Genet 5:49

    Article  Google Scholar 

  • Zhu Q, Izumchenko E et al (2015) Pathway activation strength is a novel independent prognostic biomarker for cetuximab sensitivity in colorectal cancer patients. Hum Genome Var 2:15009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton A. Buzdin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Buzdin, A.A., Borisov, N.M. (2019). MiRImpact as a Methodological Tool for the Analysis of MicroRNA at the Level of Molecular Pathways. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_91

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics