Skip to main content

Synthesis of Radiolabelled Compounds for Clinical Studies

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Methods in Clinical Pharmacology

Abstract

Regulatory requirements, quality-related measures as well as key manufacture, control, and release aspects for the synthesis of radiolabelled drugs for administration to human volunteers as part of clinical human ADME studies are discussed in detail. Additionally this review provides a general overview of synthetic, technical and methodological aspects to be considered for the synthesis of Tritium- and 14C-labelled compounds. Chemical and biochemical methods and new trends for isotope labelling are discussed based on published examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Readings

  • Abramson FP, Teffera Y, Kusmierz J, Steenwyck R, Pearson PG (1996) Replacing 14C with stable isotopes in drug metabolism studies. Drug Metab Dispos 24:697–701

    CAS  PubMed  Google Scholar 

  • Allen J, Brasseur DM, De Bruin B, Denoux M, Pérard S, Philippe N, Roy S (2007) The use of biocatalysis in the synthesis of labelled compounds, proceedings of the ninth international symposium on the synthesis and applications of isotopically labelled compounds, Edinburgh, 16–20 July, 2006. J Label Compd Radiopharm 50:342–346

    Article  CAS  Google Scholar 

  • Allen PH, Hickey MJ, Kingston LP, Wilkinson DJ (2010) Metal-catalysed isotopic exchange labelling: 30 years of experience in pharmaceutical R&D. J Label Compd Radiopharm 53:731–738

    Article  CAS  Google Scholar 

  • Atzrodt J, Derdau V, Fey T, Zimmermann J (2007) The renaissance of H/D exchange. Angew Chem Int Ed 46:7744–7765

    Article  CAS  Google Scholar 

  • Bae SK, Shon J-H (2011) Microdosing studies using accelerated mass spectrometry as exploratory investigational new drug trials. Arch Pharm Res 34:1789–1797

    Article  CAS  PubMed  Google Scholar 

  • Bayly RJ, Evans EA (1966) Stability and storage of compounds labelled with radioisotopes. J Label Compd 2:1–34

    Article  CAS  Google Scholar 

  • Bayly RJ, Evans EA (1968) Storage and stability of compounds labelled with radioisotopes, Amersham Review No 7

    Google Scholar 

  • Bayly RJ, Weigel H (1960) Self-decomposition of compounds labelled with radioisotopes. Nature 188:384–387

    Article  CAS  PubMed  Google Scholar 

  • Benakis A (1994) The importance of labelling of bioactive compounds in the development of new drugs. Adv Drug Des Dev:123–136

    Google Scholar 

  • Benkis A, Sugnaux FR, Collet FR, Kradolfer GF, Berney JP, Sion C, Necciari J, Cautreels W (1985) Carbon-14 photosynthesis labelling of natural compounds and drugs from plants. In: Synthesis and Applications of Isotopically Labeled Compounds, Proceeding of the Second International Symposium, p 219

    Google Scholar 

  • Beumer JH, Beijnen JH, Schellens JHM (2006) Mass balance studies, with a focus on anticancer drugs. Clin Pharmacokinet 45(1):33–58

    Article  CAS  PubMed  Google Scholar 

  • Bonacorsi SJ Jr, Burrell RC, Luke GM, Depue JS, Rinehart JK, Balasubramanian B, Christophers LJ, Iyer RA (2007) Synthesis of the anxiolytic agent [14C] 6-hydroxy-buspirone for use in human ADME study. J Label Compd Radiopharm 50:65–71

    Article  CAS  Google Scholar 

  • Braun MP, Yao D, Wallace MA, Marques R, Jenkins HJ, Chang A, Jia X, Crocker LS, Dean DC, Melillo DG (2004) Ultrasonic particle size reduction of radiolabeled pharmaceuticals. J Label Compd Radiopharm 47:399–406

    Article  Google Scholar 

  • Brown JA, Cochrane AR, Irvine S, Kerr WJ, Mondal B, Parkinson JA, Paterson LC, Reid M, Tuttle T, Andersson S (2014) The synthesis of highly active iridium(I) complexes and their application in catalytic hydrogen isotope exchange. Adv Synth Catal 356:3551–3562

    Article  CAS  Google Scholar 

  • Burgos A, Duffin GR, Ellames GJ, Wedge KJ (1996) [14C]-labelling of Benzisothiazolone based inhibitors of human leukocyte elastase. J Label Compd Radiopharm 38:193–201

    Article  CAS  Google Scholar 

  • Caldwell J, Gardner I, Swales N (1995) An introduction to drug disposition: the basic principle of absorption, distribution, metabolism, and excretion. Tox Path 23(2):102–112

    Article  CAS  Google Scholar 

  • Cannady EA, Aburub A, Ward C, Hinds C, Czeskis B, Ruterbories K, Suico JG, Royalty J, Ortega D, Pack BW, Begum SL, Annes WF, Lin Q, Small DS (2016) Absolute bioavailability of evacetrapib in healthy subjects determined by simultaneous administration of oral evacetrapib and intravenous [13C8]-evacetrapib as a tracer. J Label Compd Radiopharm 59:238–244

    Article  CAS  Google Scholar 

  • Cao K, Bonacorsi SJ Jr, Balasubramanian B, Hanson RL, Manchand P, Godfrey JD Jr, Fox R, Christopher LJ, Su H, Iyer R (2007) Carbon-14 labeling of Saxaliptin (BMS-477118). J Label Compd Radiopharm 50:1224–1229

    Article  CAS  Google Scholar 

  • Catch JR (1961) Carbon-14 compounds. The Radiochemical Centre Amersham/Butterworths, Bucks/London

    Google Scholar 

  • Cherry SR (2001) Fundamentals of positron emission tomography and applications in preclinical drug development. J Clin Pharmacol 41:482–491

    Article  CAS  PubMed  Google Scholar 

  • Dain JG, Collins JM, Robinson WT (1994) A regulatory and industrial perspective of the use of carbon-14 and tritium isotopes in human ADME studies. Pharm Res 11(6):925–928

    Article  CAS  PubMed  Google Scholar 

  • Derdau V, Oekonomopulos R, Schubert G (2003) [ 14C]-labeled and large-scale synthesis of the angiotensin-(1-7)-receptor agonist AVE 0991 by cross-coupling reactions. J Org Chem 68:5168–5173

    Article  CAS  PubMed  Google Scholar 

  • Deroubaix X, Coquette A (2004) The ins and outs of human ADME studies. Bus Brief: Pharmatech:1–4

    Google Scholar 

  • Dewanjee MK (1992) Radiiodination; theory, practice, and biomedical application. Kluwer Academic, Boston

    Book  Google Scholar 

  • Dueker SR, Jones AD, Clifford AJ (1998) Protocol development for biological tracer studies. Adv Exp Med Biol 445:363–378

    Article  CAS  PubMed  Google Scholar 

  • Evans EA (1974) Tritium and its compounds: second edition. Wiley, London

    Google Scholar 

  • Evans EA (1976) Guide to the self-decomposition of radiochemicals, Amersham Review No 16, The Radiochemical Centre, Amersham; booklet Amersham International plc. 1992; booklet Amersham Biosciences 2002

    Google Scholar 

  • Evans EA (1981) Synthesis of radiolabelled compounds. J Radional Chem 64(1–2):9–32

    Article  CAS  Google Scholar 

  • Filer CN (1988) The analysis of 14C and 3H-labelled compounds. Synth Apl Isot Labelled Cpd

    Google Scholar 

  • Filer C, Maniscalco M, Thayer S (2016) GMP synthesis of carbon-14 labelled substances. J Label Compd Radiopharm 59:233–237

    Article  CAS  Google Scholar 

  • Fontana E, Dellavedova P, Gambini L (2000) Carbon-14 and tritium labelled compounds good manufacturing practices for studies in humans. In: Pleiss U, Voges R (eds) Proceedings of the seventh IIS symposium Dresden, Synth. Apl. Isot. Labelled Cpd. Wiley, Chichester/New York/Weinheim/Brisbane/Singapore/Toronto, pp 499–502

    Google Scholar 

  • Fredenhagen A (2002) Radiochemical stability of 14C-labelled compounds on storage: benefits of Thioethers. J Label Compd Radiopharm 45:211–220

    Google Scholar 

  • Frederiksen SM, Sörensen GG (2003) Synthesis of tritium labelled mecillinam. J Label Compd Radiopharm 46:773–779

    Article  CAS  Google Scholar 

  • Garner RC (2000) Accelerated mass spectrometry in pharmaceutical research and development – a new analytical method for isotope measurement. Curr Drug Metab 1:205–213

    Article  CAS  PubMed  Google Scholar 

  • Godward MBE (1960) Resistance of algae to radiation. Nature 185:706

    Article  CAS  PubMed  Google Scholar 

  • Heys JR (2007) Organoiridium complexes for hydrogen isotope exchange labelling. J Label Compd Radiopharm 50:770–778

    Article  CAS  Google Scholar 

  • Heys JR, Voges R, Moenius T (2009) Preparation of compounds labelled with tritium and carbon-14, John Wiley & Sons, Inc. New York.

    Google Scholar 

  • Hickey MJ, Allen PH, Kingston LP, Wilkinson DJ (2016) The synthesis of [14C]AZD5122. Incorporation of an IV 14C-microtracer dose into a first in human study to determine the absolute oral bioavailability of AZD5122. J Label Compd Radiopharm 59:245–249

    Article  CAS  Google Scholar 

  • Hong Y, Bonacorsi SJ Jr, Tian Y, Gong S, Zhang D, Humphreys WG, Balasubramanian B, Cheesman EH, Zhang Z, Caster JF, Crane PD (2008) Synthesis of [1,2-3H]ethylamine hydrochloride and [3H]-labelled Apadenoson for a human ADME study. J Label Compd Radiopharm 51:113–117

    Article  CAS  Google Scholar 

  • Isin EM, Elmore CS, Nilsson GN, Thompson RA, Weidolf L (2012) Use of radiolabeled compounds in drug metabolism and pharmacokinetic studies. Chem Res Toxicol 25:532–542

    Article  CAS  PubMed  Google Scholar 

  • Jorabchi K, Kahen K, Lecchi P, Montaser A (2005) Chemical reaction interface mass spectroscopy with high efficiency nebulisation. Anal Chem 77:5402–5406

    Article  CAS  PubMed  Google Scholar 

  • Kerr WJ, Lindsay DM, Reid M, Atzrodt J, Derdau V, Rojahn P, Weck R (2016) Iridium-catalysed ortho-H/D and -H/T exchange under basic conditions: C-H activation of unprotected Tetrazoles. Chem Commun 52:6669–6672

    Article  CAS  Google Scholar 

  • Knochel P (2005) Handbook of functionalized organometallics, applications and synthesis. Wiley-VCH, Weinheim.

    Google Scholar 

  • Krauser JA (2013) A perspective on tritium versus carbon-14: ensuring optimal label selection in pharmaceutical research and development. J Label Compd Radiopharm 56:441–446

    Article  CAS  Google Scholar 

  • Kristensen JB, Johansen SK, Valsborg JS, Martiny L, Foged C (2003) Ragaglitazar[14C] and [3H]−labeling of ragaglitazar: a dual acting PPARα and PPARγ agonist with hypolipidemic and anti-diabetic activity. J Label Compd Radiopharm 46:475–488

    Article  CAS  Google Scholar 

  • Ku CC, Hwang SC, Kaplan L, Nallin MK, Jacob TA (1984) The preparation of carbon-14 labeled Avermectin B1a. J Label Compd Radiopharm 22:451–459

    Article  Google Scholar 

  • Kurosowa M, Kanamuru N, Nishioka K (1997) [14C]-labeling of novel prostacyclin I, derivative SM10902. J Label Compd Radiopharm 39:129–138

    Article  Google Scholar 

  • Lappin G, Garner RC (2003) Big physics, small, doses; the use of AMS and PET in human microdosing of development drugs. Nat Rev Drug Discov:233–240

    Google Scholar 

  • Lappin G, Garner RC, Meyers T, Powell J, Varley P (2006) Novel use of accelerated mass spectrometry for the quantification of low levels of systemic therapeutic recombinant protein. J Pharm Biomed Anal 41:1299–1302

    Article  CAS  PubMed  Google Scholar 

  • Lloyd C, Potwin J, Wright C (2003) Radiosynthesis conducted under cGMP compliance. In: Dean DC, Filer CF, McCarthy KE (eds) Proceedings of the eight IIS symposium Boston, Synth. Apl. Isot. Labelled Cpd. Wiley, Chichester, pp 251–254

    Google Scholar 

  • Lockley WJS (2007) 30 years with ortho-directed hydrogen isotope exchange labelling. J Label Compd Radiopharm 50:779–788

    Article  CAS  Google Scholar 

  • Lockley WJS, McEwen A, Cooke R (2012) Tritium: a coming of age for drug discovery and development ADME studies. J Label Compd Radiopharm 55:235–257

    Article  CAS  Google Scholar 

  • Loewe C, Atzrodt J, Reschke K (2016) Joe Schofield, conception, realization and qualification of a radioactive clean room lab facility dedicated to the synthesis of radiolabelled API for human ADME studies. J Label Compd Radiopharm 59:611–614

    Google Scholar 

  • McCarthy KE (2000) Recent advances in the design and synthesis of carbon-14 labelled pharmaceuticals from small molecule precursors. Curr Pharm Dess 6:1057–1083

    Article  CAS  Google Scholar 

  • Murray A, Williams D (1958) Organic syntheses with isotopes. Interscience Publishers, New York. Muccino RR (1983) Organic syntheses with carbon-14. A Wiley-Interscience Publication

    Google Scholar 

  • Mutlib AE (2008) Application of stable isotope-labelled compounds in metabolism and in metabolism-mediated toxicity studies. Chem Res Toxicol 21:1672–1689

    Article  PubMed  Google Scholar 

  • Nilson GN, Kerr WJ (2010) The development and use of novel iridium complexes as catalysts for ortho-directed hydrogen isotope exchange reactions. J Label Compd Radiopharm 53:662–667

    Article  Google Scholar 

  • Penner N, Klunk LJ, Prakash C (2009) Human radiolabeled mass balance studies: objectives, utilities and limitations. Biopharm Drug Dispos 30:185–203

    Article  CAS  PubMed  Google Scholar 

  • Penner N, Xu L, Prakash C (2012) Radiolabeled absorption, distribution, metabolism, and excretion studies in drug development: why, when, and how? Chem Res Toxicol 25:513–531

    Article  CAS  PubMed  Google Scholar 

  • Pleiss U (2003) Synthesis of [3H]vardenafil, Levitra®, using a new labelling technique. J Label Compd Radiopharm 46:1241–1247

    Article  CAS  Google Scholar 

  • Putman EW, Hassid WZ (1952) Isolation and purification of radioactive sugars by means of paper chrommatography. J Biol Chem 196:749–752

    CAS  PubMed  Google Scholar 

  • Raaen VF, Ropp GA, Raaen HP (1968) Carbon-14 in series in advanced chemistry. McGraw-Hill Book, New York/St. Louis/San Francisco/Toronto/London/Sydny

    Google Scholar 

  • Rochat R, Lopez MJ, Tsurugi H, Mashima K (2016) Recent developments in homogeneous organomagnesium catalysis. Chem Cat Chem 8(1):10–20

    CAS  Google Scholar 

  • Rochlin P (1965) Self-decomposition of carbon-14-labelled organic compounds. Chem Rev 65:685–696

    Article  CAS  Google Scholar 

  • Roffey SJ, Obach RS, Gedge JI, Smith DA (2007) What is the objective of the mass balance study? A retrospective analysis of data in animal and human excretion studies employing radiolabelled drugs. Drug Metab Rev 39:17–43

    Article  CAS  PubMed  Google Scholar 

  • Rösch F (2003) Radiochemistry and radiopharmaceutical chemistry in life sciences. In: Vertes A, Nagy S, Klencsar Z (eds) Handbook of nuclear chemistry, Vol 4, Kluwer Academic Publisher, Berlin.

    Google Scholar 

  • Salehpour M, Ekblom J, Sabetsky V, Hakansson K, Possnert G (2010) Accelerator mass spectrometry offers new opportunities for microdosing of peptide and protein pharmaceuticals. Rapid Commun Mass Spectrom 24:1481–1489

    Article  CAS  PubMed  Google Scholar 

  • Saljoughian M (2002) Synthetic tritium labeling: reagents and methodologies. Synthesis 13:1781–1801

    Google Scholar 

  • Saljoughian M, Williams PG (2000) Resent developments in tritium incorporation for radiotracer studies. Curr Pharm Des 6:1029–1056

    Article  CAS  PubMed  Google Scholar 

  • Schenk DJ, Dormer PG, Hesk D, Pollack SR, Flader Lavey C (2015) NMR-based approach to the analysis of radiopharmaceuticals: radiochemical purity, specific activity, and radioactive concentration values by proton and tritium NMR spectroscopy. J Label Compd Radiopharm 58:291–298

    Article  CAS  Google Scholar 

  • Schenk DJ, Lockley WJS, Elmore CS, Hesk D, Roberts D (2016) Determining the isotopic abundance of a labeled compound by mass spectrometry and how correcting for natural abundance distribution using analogous data from the unlabeled compound leads to a systematic error. J Label Compd Radiopharm 59:136–146

    Article  CAS  Google Scholar 

  • Schulte HR (1966) Synthesen 14C-markierter organischer Verbindungen in Radioactive Isotope in der Organischen Chemie und Biochemie. Wiley-VCH, Weinheim.

    Google Scholar 

  • Sheppard G (1972) The self-decomposition of radioactively labelled compounds. At Energy Rev 12:3–66

    Google Scholar 

  • Shu AYL, Heys JR (1994) Synthesis of carbon-14 and tritiated steroidal Sa-reductase inhibitors. J Label Compd Radiopharm 34:578–596

    Article  Google Scholar 

  • Skowera K, Kanska M (2008) Enzymatic synthesis of phenylpyruvic acid labelled with deuterium, tritium, and carbon.14. J Label Compd Radiopharm 51:321–324

    Article  CAS  Google Scholar 

  • Straznicky NE, Grima MT, Sari CI, Eikelis N, Lambert GW, Nestel PJ, Karapanagiotidis S, Wong C, Richards K, Marusic P, Dixon JB, Schlaich MP, Lambert EA (2014) A randomized controlled trial of the effects of pioglitazone treatment on sympathetic nervous system activity and cardiovascular function in obese subjects with metabolic syndrome. J Clin Endocrinol Metab 99(9):E1701–E1707

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Widdison W, Mayo M, Wilhelm S, Leece B, Chari R, Singh R, Erickson H (2011) Design of antibody-maytansinoid conjugates allows for efficient detoxification via liver metabolism. Bioconjug Chem 22:728–735

    Article  CAS  PubMed  Google Scholar 

  • Tovey KC, Spiller GH, Oldham KG, Lucas N (1974) A new method for the preparation of uniformly [14C]-labelled compounds by using Anacystis nidulans. Biochem J 142:47–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • U.S. Department of Health and Human Services Food and Drug Administration Guidance for Industry Q3A Impurities in New Drug Substance (2008)

    Google Scholar 

  • Vogel JS (2000) Accelerated mass spectrometry for human biochemistry: the practice and the potential. Nucl Instr Meth Phys Res B172:884–891

    Article  Google Scholar 

  • Vogel JS, Palmblad NM, Ognibene T, Kabir MM, Buchholz BA, Bench G (2007) Biochemical paths in humans and cells: frontiers of AMS bioanalysis. Nucl Instr Meth Phys Res B259:745–751

    Article  Google Scholar 

  • Voges R (2002) From chiral bromo[13,14,Cn]acetyl sultams to complex molecules singly/multiply labelled with isotopic carbon. J Label Compd Radiopharm 45:867–897

    Article  CAS  Google Scholar 

  • Walker AE, Pothuluri JV, Heinze TM, Volmer D, Cerniglia CE (1996) Biosynthetic production of 13C and 14C Erythronolide labeled erythromycin A. J Label Compd Radiopharm 29:59–67

    Google Scholar 

  • Wallace MA, Dean DC, Ellsworth RL, Marks T, Mellio DG, Maseurekar P (1995) Studies on the biosynthesis of Avermectins using carbon labelled 2-methyl butyric acids. In: Allen J, Voges R (eds) Synthesis and applications of isotopically labelled compounds 1994. Wiley, Chichester/New York. Paper 108, 605

    Google Scholar 

  • Whitehead DM, Hartmann S, Ilyas T, Taylor KR, Kohler AD, Ellames GJ (2013) A convenient method to produce [14C]carbon monoxide and its application to the radiosynthesis of [carboxyl- 14C]celivarone, [carboxyl- 14C]SSR149744. J Label Compd Radiopharm 56:36–41

    Article  CAS  Google Scholar 

  • Wilson RJ (1966) The radiochemical manual, 2nd edn. The Radiochemical Centre, Amersham

    Google Scholar 

  • Yu J-T, Teng F, Cheng J (2017) The construction of X-CN (X=N, S, O) bonds. Adv Syn Cat 359(1):26–38

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Atzrodt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Atzrodt, J., Derdau, V., Loewe, C. (2017). Synthesis of Radiolabelled Compounds for Clinical Studies. In: Hock, F., Gralinski, M. (eds) Drug Discovery and Evaluation: Methods in Clinical Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-56637-5_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56637-5_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56637-5

  • Online ISBN: 978-3-319-56637-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics