Skip to main content

In Vitro/In Vivo Correlation for Drug-Drug Interactions

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Methods in Clinical Pharmacology
  • 526 Accesses

Abstract

Characterizing the potential for drug-drug interactions is critical to underwriting patient safety as new chemical entities proceed through the drug discovery and development pipeline. In vitro experiments to characterize the type and extent of interaction have been developed to inform chemical modifications early in discovery and to estimate the magnitude of potential interactions as drugs progress into the clinic. Regulatory guidance provides flow schemes based on a comprehensive understanding of drug disposition to enable decision-making as to whether particular clinical interaction studies need to be run and, if so, how they may be designed. Integration of information from in vitro, in vivo, and clinical sources provides the basis for drug labeling and the safe administration of drugs post-launch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Benet LZ, Hoener BA (2002) Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther 71:115–121

    Article  CAS  PubMed  Google Scholar 

  • Bjornsson TD, Callaghan JT, Einolf HJ, Fisher V, Gan L, Grimm S, Kao J, King SP, Miwa G, Ni L, Kumar G, McLeod J, Obach SR, Roberts S, Roe A, Shah A, Snikeris F, Sullivan JT, Tweedie D, Vega JM, Walsh J, Wrighton SA (2003) The conduct of in vitro and in vivo drug-drug interaction studies: a PhRMA perspective. J Clin Pharmacol 43:443–469

    Article  CAS  PubMed  Google Scholar 

  • Bohnert T, Patel A, Templeton I, Chen Y, Lu C, Lai G, Leung L, Tse S, Einolf H, Wang Y-H, Sinz M, Stearns R, Walsky R, Geng W, Sudsakorn S, Moore D, He L, Wahlstrom J, Keims J, Narayanan R, Lang D, Yang Q (2016) Evaluation of a new molecular entity as a victim of metabolic drug-drug interactions – an industry perspective. Drug Metab Dispos 44:1399–1423

    Article  CAS  PubMed  Google Scholar 

  • Chu V, Einolf HJ, Evers R, Kumar G, Moore D, Ripp S, Silva J, Sinha V, Sinz M, Skerjanec A (2009) In vitro and in vivo induction of cytochrome P450: a survey of the current practices and recommendations: a pharmaceutical research and manufacturers of America perspective. Drug Metab Dispos 37:1339–1354

    Article  CAS  PubMed  Google Scholar 

  • Chung J, Alvarez-Nunez F, Chow V, Daurio D, David J, Dodds M, Emery M, Litweiler K, Paccaly A, Peng J, Rock B, Wienkers L, Yang C, Yu Z, Wahlstrom J (2015) Utilizing physiologically based pharmacokinetic modeling to inform formulation and clinical development for a compound with pH-dependent solubility. J Pharm Sci 104:1522–1532

    Article  CAS  PubMed  Google Scholar 

  • Day RO, Snowden L, McLachlan AJ (2017) Life-threatening drug interactions: what the physician needs to know. Intern Med J 47:501–512

    Article  PubMed  Google Scholar 

  • Dickmann LJ, Patel SK, Rock DA, Wienkers LC, Slatter JG (2011) Effects of interleukin-6 (IL-6) and an anti-IL-6 monoclonal antibody on drug-metabolizing enzymes in human hepatocyte culture. Drug Metab Dispos 39:1415–1422

    Article  CAS  PubMed  Google Scholar 

  • European Medicine Agency (EMA), Committee for Human Medical Products (CHMP) (2012) Guideline on the investigation of drug interactions. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf

  • European Medicine Agency (EMA), Committee for Human Medical Products (CHMP) (2015) Guideline on key aspects for the use of pharmacogenomics in the pharmacovigilance of medicinal products. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2015/11/WC500196800.pdf

  • Evers R, Dallas S, Dickmann LJ, Fahmi OA, Kenney JR, Kraynov E, Nguyen T, Patel AH, Slatter JG, Zhang L (2013) Critical review of preclinical approaches to investigate cytochrome P450-mediated therapeutic protein drug-drug interactions and recommendations for best practices: a white paper. Drug Metab Dispos 41:1593–1609

    Article  Google Scholar 

  • FDA Guidance for Industry (2013) Clinical pharmacogenomics: premarket evaluation in early-phase clinical studies and recommendations for labeling. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM337169.pdf

  • FDA Guidance for Industry (2017a) Clinical drug interaction studies – study design, data analysis, and clinical implications. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf

  • FDA Guidance for Industry (2017b) In vitro metabolism and transporter-mediated drug-drug interaction studies. https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm581965.pdf

  • Foti RS, Rock DA, Wienkers LC, Wahlstrom JL (2010) Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation. Drug Metab Dispos 38:981–987

    Article  CAS  PubMed  Google Scholar 

  • Foti RS, Rock DA, Pearson JT, Wahlstrom JL, Wienkers LC (2011) Mechanism-based inactivation of cytochrome P450 3A4 by mibefradil through heme destruction. Drug Metab Dispos 39:1188–1195

    Article  CAS  PubMed  Google Scholar 

  • Frere J-M, Leyh B, Renard A (1983) Lineweaver-Burk, Hanes, Eadie-Hofstee and Dixon plots in non-steady-state situations. J Theor Biol 101:387–400

    Article  CAS  PubMed  Google Scholar 

  • Grimm SW, Einolf HJ, Hall SD, He K, Lim HK, Ling KH, Lu C, Nomeir AA, Seibert E, Skordos KW, Tonn GR, VanHorn R, Wang RW, Wong YN, Yang TJ (2009) The conduct of in vitro studies to address time-dependent inhibition of drug-metabolizing enzymes: a perspective of the pharmaceutical research and manufacturers of America. Drug Metab Dispos 37:1355–1370

    Article  CAS  PubMed  Google Scholar 

  • Hutzler JM, Tracy TS (2002) Atypical kinetic profiles in drug metabolism reactions. Drug Metab Dispos 30:355–362

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Hallifax D, Obach RS, Houston JB (2005) Impact of parallel pathways of drug elimination and multiple cytochrome P450 involvement on drug-drug interactions: CYP2D6 paradigm. Drug Metab Dispos 33:837–844

    Article  CAS  PubMed  Google Scholar 

  • Iwatsubo T, Hirota N, Ooie T, Suzuki H, Shimada N, Chiba K, Ishizaki T, Green CE, Tyson CA, Sugiyama Y (1997) Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol Ther 73:147–171

    Article  CAS  PubMed  Google Scholar 

  • Jacubeit T, Drisch D, Weber E (1990) Risk factors as reflected by an intensive drug monitoring system. Agents Actions 29:117–125

    Article  CAS  PubMed  Google Scholar 

  • Jamei M, Marciniak S, Feng K, Barnett A, Tucker G, Rostami-Hodjegan A (2009) The Simcyp population-based ADME simulator. Expert Opin Drug Metab Toxicol 5:211–223

    Article  CAS  PubMed  Google Scholar 

  • Korzekwa KR, Krishnamachary N, Shou M, Ogai A, Parise RA, Rettie AE, Gonzales FJ, Tracy TS (1998) Evaluation of atypical cytochrome P450 kinetics with two-substrate models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active site. Biochemistry 37:4137–4147

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Locuson CW, Sham YY, Tracy TS (2006a) Amiodarone analog-dependent effects on CYP2C9-mediated metabolism and kinetic profiles. Drug Metab Dispos 34:1688–1696

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Wahlstrom JL, Rock DA, Warren CJ, Gorman LA, Tracy TS (2006b) CYP2C9 inhibition: impact of probe substrate selection and pharmacogenetics on in vitro inhibition profiles. Drug Metab Dispos 34:1966–1975

    Article  CAS  PubMed  Google Scholar 

  • Kunze KL, Trager WF (1993) Isoform-selective mechanism-based inhibition of cytochrome P450 1A2 by furafylline. Chem Res Toxicol 6:649–656

    Article  CAS  PubMed  Google Scholar 

  • Kunze KL, Trager WF (1996) A rational approach to management of a metabolically based drug interaction. Drug Metab Dispos 24:429–435

    CAS  PubMed  Google Scholar 

  • Levy G (1998) What are narrow therapeutic index drugs? Clin Pharmacol Ther 63:501–505

    Article  CAS  PubMed  Google Scholar 

  • Lin JH (2006) CYP induction-mediated drug interactions: in vitro assessment and clinical implications. Pharm Res 23:1089–1116

    Article  CAS  PubMed  Google Scholar 

  • Lin JH, Lu AYH (1997) Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev 49:403–449

    CAS  PubMed  Google Scholar 

  • Lin Y, Lu P, Tang C, Mei Q, Sandig G, Rodrigues AD, Rushmore TH, Shou M (2001) Substrate inhibition kinetics for cytochrome P450-catalyzed reactions. Drug Metab Dispos 29:368–374

    CAS  PubMed  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Michaelis L, Menten ML (1913) Die kinetic der invertinwirkung. Biochem Z 49:333–369

    CAS  Google Scholar 

  • Neal JM, Kunze KL, Levy RH, O’Reilly RA, Trager WF (2003) Kiiv, an in vivo parameter for predicting the magnitude of a drug interaction arising from competitive enzyme inhibition. Drug Metab Dispos 31:1043–1048

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues AD, Rushmore TH (2002) Cytochrome P450 pharmacogenetics in drug development: in vitro studies and clinical consequences. Curr Drug Metab 3:289–309

    Article  CAS  PubMed  Google Scholar 

  • Rowland M, Martin SB (1973) Kinetics of drug-drug interactions. J Pharmacokinet Biopharm 1:553–567

    Article  CAS  Google Scholar 

  • Silverman RB (1995) Mechanism-based inactivators. Methods Enzymol 249:240–283

    Article  CAS  PubMed  Google Scholar 

  • Smith DA, Di L, Kers EH (2010) The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov 9:929–929

    Article  CAS  PubMed  Google Scholar 

  • VandenBrink BM, Foti RS, Rock DA, Wienkers LC, Wahlstrom JL (2012) Prediction of CYP2D6 drug interactions from in vitro data: evidence for substrate-dependent inhibition. Drug Metab Dispos 40:47–53

    Article  CAS  PubMed  Google Scholar 

  • Wahlstrom JL, Rock DA, Slatter JG, Wienkers LC (2006) Advances in predicting CYP-mediated drug interactions in the drug discovery setting. Expert Opin Drug Discov 1:677–691

    Article  CAS  PubMed  Google Scholar 

  • Wienkers LC, Heath TG (2005) Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 4:825–833

    Article  CAS  PubMed  Google Scholar 

  • Yao C, Kunze KL, Kharasch ED, Wang Y, Trager WF, Ragueneau I, Levy RH (2001) Fluvoxamine-theophylline interaction: gap between in vitro and in vivo inhibition constants toward cytochrome P4501A2. Clin Pharmacol Ther 70:415–424

    Article  CAS  PubMed  Google Scholar 

  • Yao C, Kunze KL, Trager WF, Kharasch ED, Levy RH (2003) Comparison of in vitro and in vivo inhibition potencies of fluvoxamine toward CYP2C19. Drug Metab Dispos 31:565–571

    Article  CAS  PubMed  Google Scholar 

  • Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry Wienkers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wahlstrom, J., Wienkers, L. (2018). In Vitro/In Vivo Correlation for Drug-Drug Interactions. In: Hock, F., Gralinski, M. (eds) Drug Discovery and Evaluation: Methods in Clinical Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-56637-5_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56637-5_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56637-5

  • Online ISBN: 978-3-319-56637-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics