Skip to main content

Relaxin Family Peptide Receptors RXFP3 and RXFP4

  • Reference work entry
  • First Online:
Encyclopedia of Signaling Molecules

Synonyms

RXFP3:GPCR135, SALPR; RXFP4:GPCR142; (GPR100)

Historical Background: Relaxin Family Peptides and Their Receptors

Relaxin family peptides including the relaxins 1–3, insulin-like peptides (INSL) 3–6, and insulin-like growth factors I and II have a similar architecture to insulin. In the human, three independent genes produce three relaxin peptides, named relaxin-1, relaxin, and the most recently discovered relaxin-3 (Bathgate et al. 2013a; Halls et al. 2015). Relaxin-3 is classified by the presence of the characteristic RxxxRxxI/V relaxin-binding motif in the B-chain but otherwise has relatively low sequence homology to other relaxin peptides. Compared to other relaxins, relaxin-3 is well conserved across species (Wilkinson et al. 2005a; Yegorov et al. 2009), is believed to be the ancestral peptide (Wilkinson et al. 2005a), and in mammals is primarily a neuropeptide (Bathgate et al. 2002; Tanaka et al. 2005; Banerjee et al. 2010; Ma et al. 2007; McGowan et al. 2005; Ganella et...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahren B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov. 2009;8(5):369–85.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Jaimes L, Sutton SW, Nepomuceno D, Motley ST, Cik M, Stocking E, et al. In vitro pharmacological characterization of RXFP3 allosterism: an example of probe dependency. PLoS One. 2012;7(2):e30792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ang SY, Hutchinson DS, Patil N, Evans BA, Bathgate RA, Halls ML, et al. Signal transduction pathways activated by insulin-like peptide 5 at the relaxin family peptide RXFP4 receptor. Br J Pharmacol. 2016. doi 10.1111/bph.13522.

    Google Scholar 

  • Baker JG, Hill SJ. Multiple GPCR conformations and signalling pathways: implications for antagonist affinity estimates. Trends Pharmacol Sci. 2007;28(8):374–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banerjee A, Shen PJ, Ma S, Bathgate RA, Gundlach AL. Swim stress excitation of nucleus incertus and rapid induction of relaxin-3 expression via CRF1 activation. Neuropharmacology. 2010;58(1):145–55.

    Article  PubMed  CAS  Google Scholar 

  • Bathgate RA, Samuel CS, Burazin TC, Layfield S, Claasz AA, Reytomas IG, et al. Human relaxin gene 3 (H3) and the equivalent mouse relaxin (M3) gene. Novel members of the relaxin peptide family. J Biol Chem. 2002;277(2):1148–57.

    Article  PubMed  CAS  Google Scholar 

  • Bathgate RA, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev. 2013a;93(1):405–80.

    Article  PubMed  CAS  Google Scholar 

  • Bathgate RA, Oh MH, Ling WJ, Kaas Q, Hossain MA, Gooley PR, et al. Elucidation of relaxin-3 binding interactions in the extracellular loops of RXFP3. Front Endocrinol. 2013b;4:13.

    Article  Google Scholar 

  • Belgi A, Hossain MA, Shabanpoor F, Chan L, Zhang S, Bathgate RA, et al. Structure and function relationship of murine insulin-like peptide 5 (INSL5): free C-terminus is essential for RXFP4 receptor binding and activation. Biochemistry. 2011;50(39):8352–61.

    Article  PubMed  CAS  Google Scholar 

  • Belgi A, Bathgate RA, Kocan M, Patil N, Zhang S, Tregear GW, et al. Minimum active structure of insulin-like peptide 5. J Med Chem. 2013;56(23):9509–16.

    Article  PubMed  CAS  Google Scholar 

  • Boels K, Schaller HC. Identification and characterisation of GPR100 as a novel human G-protein-coupled bradykinin receptor. Br J Pharmacol. 2003;140(5):932–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boels K, Hermans-Borgmeyer I, Schaller HC. Identification of a mouse orthologue of the G-protein-coupled receptor SALPR and its expression in adult mouse brain and during development. Brain Res Dev Brain Res. 2004;152(2):265–8.

    Article  PubMed  CAS  Google Scholar 

  • Burnicka-Turek O, Mohamed BA, Shirneshan K, Thanasupawat T, Hombach-Klonisch S, Klonisch T, et al. INSL5-deficient mice display an alteration in glucose homeostasis and an impaired fertility. Endocrinology. 2012;153(10):4655–65.

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Kuei C, Sutton SW, Bonaventure P, Nepomuceno D, Eriste E, et al. Pharmacological characterization of relaxin-3/INSL7 receptors GPCR135 and GPCR142 from different mammalian species. J Pharmacol Exp Ther. 2005;312(1):83–95.

    Article  PubMed  CAS  Google Scholar 

  • Conklin D, Lofton-Day CE, Haldeman BA, Ching A, Whitmore TE, Lok S, et al. Identification of INSL5, a new member of the insulin superfamily. Genomics. 1999;60:50–6.

    Article  PubMed  CAS  Google Scholar 

  • Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103(2):239–52.

    Article  PubMed  CAS  Google Scholar 

  • Evans BA, Sato M, Sarwar M, Hutchinson DS, Summers RJ. Ligand-directed signalling at beta-adrenoceptors. Br J Pharmacol. 2010;159(5):1022–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ganella DE, Callander GE, Ma S, Bye CR, Gundlach AL, Bathgate RA. Modulation of feeding by chronic rAAV expression of a relaxin-3 peptide agonist in rat hypothalamus. Gene Ther. 2013a;20(7):703–16.

    Article  PubMed  CAS  Google Scholar 

  • Ganella DE, Ma S, Gundlach AL. Relaxin-3/RXFP3 signaling and neuroendocrine function – a perspective on extrinsic hypothalamic control. Front Endocrinol. 2013b;4:128.

    Article  Google Scholar 

  • Grosse J, Heffron H, Burling K, Akhter Hossain M, Habib AM, Rogers GJ, et al. Insulin-like peptide 5 is an orexigenic gastrointestinal hormone. Proc Natl Acad Sci U S A. 2014;111(30):11133–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halls ML, Bathgate RA, Sutton SW, Dschietzig TB, Summers RJ. International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides. Pharmacol Rev. 2015;67(2):389–440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haugaard-Kedstrom LM, Shabanpoor F, Hossain MA, Clark RJ, Ryan PJ, Craik DJ, et al. Design, synthesis, and characterization of a single-chain peptide antagonist for the relaxin-3 receptor RXFP3. J Am Chem Soc. 2011;133(13):4965–74.

    Article  PubMed  CAS  Google Scholar 

  • Hida T, Takahashi E, Shikata K, Hirohashi T, Sawai T, Seiki T, et al. Chronic intracerebroventricular administration of relaxin-3 increases body weight in rats. J Recept Signal Transduct Res. 2006;26(3):147–58.

    Article  PubMed  CAS  Google Scholar 

  • Hosken IT, Sutton SW, Smith CM, Gundlach AL. Relaxin-3 receptor (Rxfp3) gene knockout mice display reduced running wheel activity: implications for role of relaxin-3/RXFP3 signalling in sustained arousal. Behav Brain Res. 2014;278:167–75.

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Wade JD. The roles of the A- and B-chains of human relaxin-2 and -3 on their biological activity. Curr Protein Pept Sci. 2010;11(8):719–24.

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Rosengren KJ, Haugaard-Jonsson LM, Zhang S, Layfield S, Ferraro T, et al. The A-chain of human relaxin family peptides has distinct roles in the binding and activation of the different relaxin family peptide receptors. J Biol Chem. 2008;283(25):17287–97.

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Bathgate RA, Rosengren KJ, Shabanpoor F, Zhang S, Lin F, et al. The structural and functional role of the B-chain C-terminal arginine in the relaxin-3 peptide antagonist, R3(BDelta23-27)R/I5. Chem Biol Drug Des. 2009;73(1):46–52.

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T, Miller LJ. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev. 2010;62(2):265–304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kocan M, Sarwar M, Hossain MA, Wade JD, Summers RJ. Signalling profiles of H3 relaxin, H2 relaxin and R3(BDelta23-27)R/I5 acting at the relaxin family peptide receptor 3 (RXFP3). Br J Pharmacol. 2014;171(11):2827–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuei C, Sutton S, Bonaventure P, Pudiak C, Shelton J, Zhu J, et al. R3(BDelta23 27)R/I5 chimeric peptide, a selective antagonist for GPCR135 and GPCR142 over relaxin receptor LGR7: in vitro and in vivo characterization. J Biol Chem. 2007;282(35):25425–35.

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Eriste E, Sutton S, Chen J, Roland B, Kuei C, et al. Identification of relaxin-3/INSL7 as an endogenous ligand for the orphan G-protein-coupled receptor GPCR135. J Biol Chem. 2003a;278(50):50754–64.

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Chen J, Sutton S, Roland B, Kuei C, Farmer N, et al. Identification of relaxin-3/INSL7 as a ligand for GPCR142. J Biol Chem. 2003b;278(50):50765–70.

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Kuei C, Sutton S, Chen J, Bonaventure P, Wu J, et al. INSL5 is a high affinity specific agonist for GPCR142 (GPR100). J Biol Chem. 2005a;280(1):292–300.

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Chen J, Kuei C, Sutton S, Nepomuceno D, Bonaventure P, et al. Relaxin-3/insulin-like peptide 5 chimeric peptide, a selective ligand for G protein-coupled receptor (GPCR)135 and GPCR142 over leucine-rich repeat-containing G protein-coupled receptor 7. Mol Pharmacol. 2005b;67(1):231–40.

    Article  PubMed  CAS  Google Scholar 

  • Ma S, Bonaventure P, Ferraro T, Shen PJ, Burazin TC, Bathgate RA, et al. Relaxin-3 in GABA projection neurons of nucleus incertus suggests widespread influence on forebrain circuits via G-protein-coupled receptor-135 in the rat. Neuroscience. 2007;144(1):165–90.

    Article  PubMed  CAS  Google Scholar 

  • Ma S, Olucha-Bordonau FE, Hossain MA, Lin F, Kuei C, Liu C, et al. Modulation of hippocampal theta oscillations and spatial memory by relaxin-3 neurons of the nucleus incertus. Learn Mem. 2009;16(11):730–42.

    Article  PubMed  CAS  Google Scholar 

  • Mashima H, Ohno H, Yamada Y, Sakai T, Ohnishi H. INSL5 may be a unique marker of colorectal endocrine cells and neuroendocrine tumors. Biochem Biophys Res Commun. 2013;432(4):586–92.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Kamohara M, Sugimoto T, Hidaka K, Takasaki J, Saito T, et al. The novel G-protein coupled receptor SALPR shares sequence similarity with somatostatin and angiotensin receptors. Gene. 2000;248(1–2):183–9.

    Article  PubMed  CAS  Google Scholar 

  • McGowan BM, Stanley SA, Smith KL, White NE, Connolly MM, Thompson EL, et al. Central relaxin-3 administration causes hyperphagia in male Wistar rats. Endocrinology. 2005;146(8):3295–300.

    Article  PubMed  CAS  Google Scholar 

  • McGowan BM, Stanley SA, Smith KL, Minnion JS, Donovan J, Thompson EL, et al. Effects of acute and chronic relaxin-3 on food intake and energy expenditure in rats. Regul Pept. 2006;136:72–7.

    Article  PubMed  CAS  Google Scholar 

  • Morikawa Y, Ueyama E, Senba E. Fasting-induced activation of mitogen-activated protein kinases (ERK/p38) in the mouse hypothalamus. J Neuroendocrinol. 2004;16(2):105–12.

    Article  PubMed  CAS  Google Scholar 

  • Munro J, Skrobot O, Sanyoura M, Kay V, Susce MT, Glaser PE, et al. Relaxin polymorphisms associated with metabolic disturbance in patients treated with antipsychotics. J Psychopharmacol. 2012;26(3):374–9.

    Article  PubMed  CAS  Google Scholar 

  • Nunez A, Cervera-Ferri A, Olucha-Bordonau F, Ruiz-Torner A, Teruel V. Nucleus incertus contribution to hippocampal theta rhythm generation. Eur J Neurosci. 2006;23(10):2731–8.

    Article  PubMed  CAS  Google Scholar 

  • Olucha-Bordonau FE, Teruel V, Barcia-Gonzalez J, Ruiz-Torner A, Valverde-Navarro AA, Martinez-Soriano F. Cytoarchitecture and efferent projections of the nucleus incertus of the rat. J Comp Neurol. 2003;464(1):62–97.

    Article  PubMed  Google Scholar 

  • Patil NA, Hughes RA, Rosengren KJ, Kocan M, Ang SY, Tailhades J, et al. Engineering of a novel simplified human insulin-like peptide 5 agonist. J Med Chem. 2016;59:2118–2125.

    Article  PubMed  CAS  Google Scholar 

  • Price MA, Cruzalegui FH, Treisman R. The p38 and ERK MAP kinase pathways cooperate to activate Ternary Complex Factors and c-fos transcription in response to UV light. EMBO J. 1996;15(23):6552–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosengren KJ, Zhang S, Lin F, Daly NL, Scott DJ, Hughes RA, et al. Solution structure and characterization of the LGR8 receptor binding surface of insulin-like peptide 3. J Biol Chem. 2006a;281(38):28287–95.

    Article  PubMed  CAS  Google Scholar 

  • Rosengren KJ, Lin F, Bathgate RA, Tregear GW, Daly NL, Wade JD, et al. Solution structure and novel insights into the determinants of the receptor specificity of human relaxin-3. J Biol Chem. 2006b;281(9):5845–51.

    Article  PubMed  CAS  Google Scholar 

  • Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev. 2004;68(2):320–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryan PJ, Buchler E, Shabanpoor F, Hossain MA, Wade JD, Lawrence AJ, et al. Central relaxin-3 receptor (RXFP3) activation decreases anxiety- and depressive-like behaviours in the rat. Behav Brain Res. 2013a;244:142–51.

    Article  PubMed  CAS  Google Scholar 

  • Ryan PJ, Kastman HE, Krstew EV, Rosengren KJ, Hossain MA, Churilov L, et al. Relaxin-3/RXFP3 system regulates alcohol-seeking. Proc Natl Acad Sci U S A. 2013b;110(51):20789–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasaguri K, Kikuchi M, Hori N, Yuyama N, Onozuka M, Sato S. Suppression of stress immobilization-induced phosphorylation of ERK 1/2 by biting in the rat hypothalamic paraventricular nucleus. Neurosci Lett. 2005;383(1–2):160–4.

    Article  PubMed  CAS  Google Scholar 

  • Scott DJ, Fu P, Shen PJ, Gundlach A, Layfield S, Riesewijk A, et al. Characterization of the rat INSL3 receptor. Ann N Y Acad Sci. 2005;1041:13–6.

    Article  PubMed  CAS  Google Scholar 

  • Shabanpoor F, Akhter Hossain M, Ryan PJ, Belgi A, Layfield S, Kocan M, et al. Minimization of human relaxin-3 leading to high-affinity analogues with increased selectivity for relaxin-family peptide 3 receptor (RXFP3) over RXFP1. J Med Chem. 2012;55(4):1671–81.

    Article  PubMed  CAS  Google Scholar 

  • Shen CP, Tsimberg Y, Salvadore C, Meller E. Activation of Erk and JNK MAPK pathways by acute swim stress in rat brain regions. BMC Neurosci. 2004;5(1):36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith CM, Lawrence AJ, Sutton SW, Gundlach AL. Behavioral phenotyping of mixed background (129S5:B6) relaxin-3 knockout mice. Ann N Y Acad Sci. 2009;1160:236–41.

    Article  PubMed  CAS  Google Scholar 

  • Smith CM, Shen PJ, Banerjee A, Bonaventure P, Ma S, Bathgate RA, et al. Distribution of relaxin-3 and RXFP3 within arousal, stress, affective, and cognitive circuits of mouse brain. J Comp Neurol. 2010;518(19):4016–45.

    Article  PubMed  CAS  Google Scholar 

  • Smith CM, Ryan PJ, Hosken IT, Ma S, Gundlach AL. Relaxin-3 systems in the brain-The first 10 years. J Chem Neuroanat. 2011;42:262–75.

    Article  PubMed  CAS  Google Scholar 

  • Smith CM, Chua BE, Zhang C, Walker AW, Haidar M, Hawkes D, et al. Central injection of relaxin-3 receptor (RXFP3) antagonist peptides reduces motivated food seeking and consumption in C57BL/6 J mice. Behav Brain Res. 2014;268:117–26.

    Article  PubMed  CAS  Google Scholar 

  • Sudo S, Kumagai J, Nishi S, Layfield S, Ferraro T, Bathgate RA, et al. H3 relaxin is a specific ligand for LGR7 and activates the receptor by interacting with both the ectodomain and the exoloop 2. J Biol Chem. 2003;278(10):7855–62.

    Article  PubMed  CAS  Google Scholar 

  • Sutton RE, Koob GF, Le Moal M, Rivier J, Vale W. Corticotropin releasing factor produces behavioural activation in rats. Nature. 1982;297(5864):331–3.

    Article  PubMed  CAS  Google Scholar 

  • Sutton SW, Bonaventure P, Kuei C, Roland B, Chen J, Nepomuceno D, et al. Distribution of G-Protein-Coupled Receptor (GPCR)135 binding sites and receptor mRNA in the rat brain suggests a role for relaxin-3 in neuroendocrine and sensory processing. Neuroendocrinology. 2004;80(5):298–307.

    Article  PubMed  CAS  Google Scholar 

  • Sutton SW, Shelton J, Smith C, Williams J, Yun S, Motley T, et al. Metabolic and neuroendocrine responses to RXFP3 modulation in the central nervous system. Ann N Y Acad Sci. 2009;1160:242–9.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Iijima N, Miyamoto Y, Fukusumi S, Itoh Y, Ozawa H, et al. Neurons expressing relaxin 3/INSL 7 in the nucleus incertus respond to stress. Eur J Neurosci. 2005;21(6):1659–70.

    Article  PubMed  Google Scholar 

  • Thanasupawat T, Hammje K, Adham I, Ghia JE, Del Bigio MR, Krcek J, et al. INSL5 is a novel marker for human enteroendocrine cells of the large intestine and neuroendocrine tumours. Oncol Rep. 2013;29(1):149–54.

    Article  PubMed  Google Scholar 

  • Van der Westhuizen ET. Molecular characterisation of human and mouse relaxin-3 receptors (RXFP3) in recombinant and endogenously expressing cell lines. Melbourne: Monash University; 2008.

    Google Scholar 

  • Van Der Westhuizen E, Sexton PM, Bathgate RA, Summers RJ. Responses of GPCR135 to human gene 3 (H3) relaxin in CHO-K1 cells determined by microphysiometry. Ann N Y Acad Sci. 2005;1041:332–7.

    Article  PubMed  CAS  Google Scholar 

  • van der Westhuizen ET, Werry TD, Sexton PM, Summers RJ. The Relaxin Family Peptide Receptor 3 (RXFP3) activates ERK1/2 through a PKC dependent mechanism. Mol Pharmacol. 2007;71:1618–29.

    Article  PubMed  CAS  Google Scholar 

  • van der Westhuizen ET, Christopoulos A, Sexton PM, Wade JD, Summers RJ. H2 relaxin is a biased ligand relative to H3 relaxin at the relaxin family peptide receptor 3 (RXFP3). Mol Pharmacol. 2010;77(5):759–72.

    Article  PubMed  CAS  Google Scholar 

  • Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med. 1996;74(10):589–607.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson TN, Speed TP, Tregear GW, Bathgate RA. Evolution of the relaxin-like peptide family. BMC Evol Biol. 2005a;5(1):14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilkinson TN, Speed TP, Tregear GW, Bathgate RA. Coevolution of the relaxin-like peptides and their receptors. Ann N Y Acad Sci. 2005b;1041:534–9.

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science. 2010;330(6007):1066–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamoto H, Arai T, Tasaka R, Mori Y, Iguchi K, Unno K, et al. Inhibitory effect of relaxin-3 on insulin secretion in isolated pancreas and insulinoma. J Health Sci. 2009;55(1):132–7.

    Article  CAS  Google Scholar 

  • Yegorov S, Good-Avila SV, Parry L, Wilson BC. Relaxin family genes in humans and teleosts. Ann N Y Acad Sci. 2009;1160:42–4.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhu M, Zhao M, Chen W, Fu Y, Liu Y, et al. The plasma levels of relaxin-2 and relaxin-3 in patients with diabetes. Clin Biochem. 2013;46(16–17):1713–6.

    Article  PubMed  CAS  Google Scholar 

  • Zhang WJ, Wang XY, Guo YQ, Luo X, Gao XJ, Shao XX, et al. The highly conserved negatively charged Glu141 and Asp145 of the G-protein-coupled receptor RXFP3 interact with the highly conserved positively charged arginine residues of relaxin-3. Amino Acids. 2014;46:1393–402.

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Kuei C, Sutton S, Kamme F, Yu J, Bonaventure P, et al. Identification of the domains in RXFP4 (GPCR142) responsible for the high affinity binding and agonistic activity of INSL5 at RXFP4 compared to RXFP3 (GPCR135). Eur J Pharmacol. 2008;590(1–3):43–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Summers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kocan, M., Ang, S.Y., Summers, R.J. (2018). Relaxin Family Peptide Receptors RXFP3 and RXFP4. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_583

Download citation

Publish with us

Policies and ethics