Skip to main content

TiO2/SiO2 Films for Removal of Volatile Organic Compounds (VOCs) from Indoor Air

  • Reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Volatile organic compounds (VOCs) are the major pollutants in indoor air, which significantly impact indoor air quality and thus influence human health. A long-term exposure to VOCs will be detrimental to human health causing sick building syndrome (SBS). Photocatalytic decomposition of VOCs using TiO2 as a photocatalyst is a key technology for air cleaning devices because it can totally convert most VOC pollutants at low concentrations to harmless inorganic products at ambient temperature. UVA light required in the air cleaning device is nowadays a very cheap light source. A common approach to enhance the photocatalytic activity of TiO2 is also to increase its surface area (100–200 m2/g to 400–1000 m2/g). This can be achieved by immobilization of TiO2 on the porous supports such as porous silica and the preparation of such a catalyst in the form of a thin layer using an appropriate carrier. Porous silica is superior support for accommodating photocatalyst nanoparticles because it is chemically inert, possesses high surface area, is transparent to UV radiation, has great physical stability, and has hydrophobic character.

An overview of the design and development of TiO2/SiO2 composite photocatalyst in the form of films with superior activity for removal of VOCs from the polluted air is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvaro M, Aprile C, Benitez M et al (2006) Photocatalytic activity of structured mesoporous TiO2 materials. J Phys Chem B 110:6661–6665. https://doi.org/10.1021/jp0573240

    Article  Google Scholar 

  2. Bloh JZ, Dillert R, Bahnemann DW (2012) Designing optimal metal-doped photocatalysts: correlation between photocatalytic activity, doping ratio, and particle size. J Phys Chem C 116: 25558–25562. https://doi.org/10.1021/jp307313z

    Article  Google Scholar 

  3. Chang J, Waclawik ER (2014) Colloidal semiconductor nanocrystals: controlled synthesis and surface chemistry in organic media. RSC Adv 4:23505. https://doi.org/10.1039/c4ra02684e

    Article  Google Scholar 

  4. Chen W, Zhang JS, Zhang Z (2005) Performance of air cleaners for removing multiple volatile organic compounds in indoor air. ASHRAE Trans 111:1101–1114. https://doi.org/10.1039/978-1-84755-231-0

    Article  Google Scholar 

  5. Childs LP, Ollis DF (1980) Is photocatalysis catalytic? J Catal 66:383–390. https://doi.org/10.1016/0021-9517(80)90041-X

    Article  Google Scholar 

  6. Černigoj U, Kete M, Lavrenčič Štangar U (2010) Development of a fluorescence-based method for evaluation of self-cleaning properties of photocatalytic layers. Catal Today 151:46–52. https://doi.org/10.1016/j.cattod.2010.03.043

    Article  Google Scholar 

  7. Černigoj U, Štangar UL, Trebše P et al (2006) Photocatalytically active TiO2 thin films produced by surfactant-assisted sol–gel processing. Thin Solid Films 495:327–332. https://doi.org/10.1016/j.tsf.2005.08.240

    Article  Google Scholar 

  8. Černigoj U, Štangar UL, Trebše P et al (2007) Degradation of neonicotinoid insecticides by different advanced oxidation processes and studying the effect of ozone on TiO2 photocatalysis. Appl Catal B Environ 75:229–238. https://doi.org/10.1016/j.apcatb.2007.04.014

    Article  Google Scholar 

  9. Gao X, Wachs IE (1999) Titania–silica as catalysts: molecular structural characteristics and physico-chemical properties. Catal Today 51:233–254. https://doi.org/10.1016/S0920-5861(99)00048-6

    Article  Google Scholar 

  10. Inturi SNR, Boningari T, Suidan M, Smirniotis PG (2014) Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Appl Catal B Environ 144:333–342. https://doi.org/10.1016/j.apcatb.2013.07.032

    Article  Google Scholar 

  11. Kete M, Pliekhova O, Matoh L, Štangar UL (2017) Design and evaluation of a compact photocatalytic reactor for water treatment. Environ Sci Pollut Res 1–15. https://doi.org/10.1007/s11356-017-9895-3

    Article  Google Scholar 

  12. Kozuch S, Martin JML (2012) “Turning over” definitions in catalytic cycles. ACS Catal 2: 2787–2794. https://doi.org/10.1021/cs3005264

    Article  Google Scholar 

  13. Kumar S, Ojha K, Ganguli AK (2017) Interfacial charge transfer in photoelectrochemical processes. Adv Mater Interfaces 4:1600981

    Article  Google Scholar 

  14. Kuwahara Y, Yamashita H (2011) Efficient photocatalytic degradation of organics diluted in water and air using TiO2 designed with zeolites and mesoporous silica materials. J Mater Chem 21:2407–2416. https://doi.org/10.1039/C0JM02741C

    Article  Google Scholar 

  15. Liao Y, Xie C, Liu Y et al (2012) Comparison on photocatalytic degradation of gaseous formaldehyde by TiO2, ZnO and their composite. Ceram Int 38:4437–4444. https://doi.org/10.1016/j.ceramint.2012.03.016

    Article  Google Scholar 

  16. Liu G, Wang T, Zhou W et al (2015a) Crystal-facet-dependent hot-electron transfer in plasmonic-Au/semiconductor heterostructures for efficient solar photocatalysis. J Mater Chem C 3:7538–7542. https://doi.org/10.1039/C5TC01406A

    Article  Google Scholar 

  17. Liu S, Tang Z-R, Sun Y et al (2015b) One-dimension-based spatially ordered architectures for solar energy conversion. Chem Soc Rev 44:5053–5075. https://doi.org/10.1039/C4CS00408F

    Article  Google Scholar 

  18. Liu Z, Zhang X, Murakami T, Fujishima A (2008) Sol–gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties. Sol Energy Mater Sol Cells 92:1434–1438. https://doi.org/10.1016/j.solmat.2008.06.005

    Article  Google Scholar 

  19. López-Muñoz M-J, van Grieken R, Aguado J, Marugán J (2005) Role of the support on the activity of silica-supported TiO2 photocatalysts: structure of the TiO2/SBA-15 photocatalysts. Catal Today 101:307–314. https://doi.org/10.1016/j.cattod.2005.03.017

    Article  Google Scholar 

  20. Marschall R (2014) Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv Funct Mater 24:2421–2440. https://doi.org/10.1002/adfm.201303214

    Article  Google Scholar 

  21. Marschall R, Wang L (2014) Non-metal doping of transition metal oxides for visible-light photocatalysis. Catal Today 225:111–135. https://doi.org/10.1016/j.cattod.2013.10.088

    Article  Google Scholar 

  22. Maučec D, Šuligoj A, Ristić A et al (2017) Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH. Catal Today. https://doi.org/10.1016/j.cattod.2017.05.061

    Article  Google Scholar 

  23. Novak Tušar N, Jank S, Gläser R (2011) Manganese-containing porous silicates: synthesis, structural properties and catalytic applications. ChemCatChem 3:254–269. https://doi.org/10.1002/cctc.201000311

    Article  Google Scholar 

  24. Novotná P, Zita J, Krýsa J et al (2008) Two-component transparent TiO2/SiO2 and TiO2/PDMS films as efficient photocatalysts for environmental cleaning. Appl Catal B Environ 79:179–185. https://doi.org/10.1016/j.apcatb.2007.10.012

    Article  Google Scholar 

  25. Obee TN, Brown RT (1995) TiO2 Photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environ Sci Technol 29:1223–1231. https://doi.org/10.1021/es00005a013

    Article  Google Scholar 

  26. Pan X, Yang M-Q, Fu X et al (2013) Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5:3601. https://doi.org/10.1039/c3nr00476g

    Article  Google Scholar 

  27. Perathoner S, Lanzafame P, Passalacqua R et al (2006) Use of mesoporous SBA-15 for nanostructuring titania for photocatalytic applications. Microporous Mesoporous Mater 90: 347–361. https://doi.org/10.1016/j.micromeso.2005.10.024

    Article  Google Scholar 

  28. Qian X, Fuku K, Kuwahara Y et al (2014) Design and functionalization of photocatalytic systems within mesoporous silica. ChemSusChem 7:1528–1536. https://doi.org/10.1002/cssc.201400111

    Article  Google Scholar 

  29. Rodrigues S, Ranjit KT, Uma S et al (2005) Single-step synthesis of a highly active visible-light photocatalyst for oxidation of a common indoor air pollutant: acetaldehyde. Adv Mater 17: 2467–2471. https://doi.org/10.1002/adma.200402064

    Article  Google Scholar 

  30. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chemie Int Ed 50:2904–2939

    Article  Google Scholar 

  31. Su J, Zou X, Chen J-S (2014) Self-modification of titanium dioxide materials by Ti 3+ and/or oxygen vacancies: new insights into defect chemistry of metal oxides. RSC Adv 4: 13979–13988. https://doi.org/10.1039/C3RA47757F

    Article  Google Scholar 

  32. Šuligoj A, Lavrenčič Štangar U, Novak Tušar N (2014) Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate. Chem Pap 68:1265–1272. https://doi.org/10.2478/s11696-014-0553-7

    Article  Google Scholar 

  33. Šuligoj A, Štangar UL, Ristić A et al (2016) TiO2–SiO2 films from organic-free colloidal TiO2 anatase nanoparticles as photocatalyst for removal of volatile organic compounds from indoor air. Appl Catal B Environ 184:119–131. https://doi.org/10.1016/j.apcatb.2015.11.007

    Article  Google Scholar 

  34. Tasbihi M, Călin I, Šuligoj A et al (2017) Photocatalytic degradation of gaseous toluene by using TiO2 nanoparticles immobilized on fiberglass cloth. J Photochem Photobiol A Chem 336:89–97. https://doi.org/10.1016/j.jphotochem.2016.12.025

    Article  Google Scholar 

  35. Tasbihi M, Kete M, Raichur AM et al (2012) Photocatalytic degradation of gaseous toluene by using immobilized titania/silica on aluminum sheets. Environ Sci Pollut Res 19:3735–3742. https://doi.org/10.1007/s11356-012-0864-6

    Article  Google Scholar 

  36. Tasbihi M, Lavrenčič Štangar U, Černigoj U et al (2011) Photocatalytic oxidation of gaseous toluene on titania/mesoporous silica powders in a fluidized-bed reactor. Catal Today 161: 181–188. https://doi.org/10.1016/j.cattod.2010.08.015

    Article  Google Scholar 

  37. Tasbihi M, Lavrenčič Štangar U, Škapin AS et al (2010) Titania-containing mesoporous silica powders: structural properties and photocatalytic activity towards isopropanol degradation. J Photochem Photobiol A Chem 216:167–178. https://doi.org/10.1016/j.jphotochem.2010.07.011

    Article  Google Scholar 

  38. Tasbihi M, Štangar UL, Černigoj U, Kogej K (2009) Low-temperature synthesis and characterization of anatase TiO2 powders from inorganic precursors. Photochem Photobiol Sci 8:719. https://doi.org/10.1039/b817472e

    Article  Google Scholar 

  39. Tuel A, Hubert-Pfalzgraf LGG (2003) Nanometric monodispersed titanium oxide particles on mesoporous silica: synthesis, characterization, and catalytic activity in oxidation reactions in the liquid phase. J Catal 217:343–353. https://doi.org/10.1016/S0021-9517(03)00078-2

    Article  Google Scholar 

  40. van Grieken R, Aguado J, López-Muñoz MJ, Marugán J (2002) Synthesis of size-controlled silica-supported TiO2 photocatalysts. J Photochem Photobiol A Chem 148: 315–322. https://doi.org/10.1016/S1010-6030(02)00058-8

    Article  Google Scholar 

  41. Wang S, Ang HM, Tade MO (2007) Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ Int 33:694–705. https://doi.org/10.1016/j.envint.2007.02.011

    Article  Google Scholar 

  42. Wang X, Li F, Hao Y et al (2013) TiO2/SBA-15 composites prepared using H2TiO3 by hydrothermal method and its photocatalytic activity. Mater Lett 99:38–41. https://doi.org/10.1016/j.matlet.2013.02.060

    Article  Google Scholar 

  43. Yan W, Chen B, Mahurin SM et al (2004) Surface sol−gel modification of mesoporous silica materials with TiO2 for the assembly of ultrasmall gold nanoparticles. J Phys Chem B 108: 2793–2796. https://doi.org/10.1021/jp037713z

    Article  Google Scholar 

  44. Yang HG, Sun CH, Qiao SZ et al (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–641. https://doi.org/10.1038/nature06964

    Article  Google Scholar 

  45. Yang M-Q, Zhang N, Pagliaro M, Xu Y-J (2014) Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem Soc Rev 43:8240–8254. https://doi.org/10.1039/C4CS00213J

    Article  Google Scholar 

  46. Zhang N, Yang M-Q, Liu S et al (2015) Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev 115:10307–10377. https://doi.org/10.1021/acs.chemrev.5b00267

    Article  Google Scholar 

  47. Zhang N, Zhang Y, Xu Y-J (2012) Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4:5792. https://doi.org/10.1039/c2nr31480k

    Article  Google Scholar 

  48. Zhang Y, Tang Z-R, Fu X, Xu Y-J (2010) TiO2 −graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2 −graphene truly different from other TiO 2 −carbon composite materials? ACS Nano 4:7303–7314. https://doi.org/10.1021/nn1024219

    Article  Google Scholar 

  49. Zhang Y, Xiong G, Yao N et al (2001) Preparation of titania-based catalysts for formaldehyde photocatalytic oxidation from TiCl4 by the sol–gel method. Catal Today 68: 89–95. https://doi.org/10.1016/S0920-5861(01)00295-4

    Article  Google Scholar 

  50. Zhao D, Feng J, Huo Q et al (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552. https://doi.org/10.1126/science.279.5350.548

    Article  Google Scholar 

  51. Zwilling V, Darque-Ceretti E, Boutry-Forveille A et al (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27:629–637. https://doi.org/10.1016/0022-5088(77)90043-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urška Lavrenčič Štangar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tušar, N.N., Šuligoj, A., Štangar, U.L. (2019). TiO2/SiO2 Films for Removal of Volatile Organic Compounds (VOCs) from Indoor Air. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_76

Download citation

Publish with us

Policies and ethics