Skip to main content

Metagenomics of Methanogenic Communities in Rice Paddy: The Importance of Methanocella

  • Reference work entry
  • First Online:
Biogenesis of Hydrocarbons

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 751 Accesses

Abstract

Methane is a potent greenhouse gas in the atmosphere that has shown nearly tripled increase since the preindustrial era. Paddy fields represent an anthropogenic source contributing about 5% of annual global CH4 emission. It is important to understand the mechanism of CH4 production and emission in order to understand carbon cycling and develop mitigation technology for CH4 emissions. In this chapter, I review the research advances of methanogenesis in association with rice roots with an emphasis on the finding and characterization of Methanocellales methanogens. The importance of root-derived C as a major C source for CH4 production, the identification of Methanocellales as the key methanogens responsible for CH4 production in rice rhizosphere, and the genomic insights into the adaptation of the Methanocellales methanogens to paddy field environments have been discussed. Mechanistic understanding of Methanocellales ecophysiology shall not only shed a light on methanogen evolution and ecology but also pave a way towards the development of biotechnology for control of methane emissions from paddy fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson I, Ulrich LE, Lupa B, Susanti D, Porat I, Hooper SD, Lykidis A, Sieprawska-Lupa M, Dharmarajan L, Goltsman E et al (2009) Genomic characterization of methanomicrobiales reveals three classes of methanogens. PLoS One 4:e5797

    Article  PubMed  PubMed Central  Google Scholar 

  • Angel R, Matthies D, Conrad R (2011) Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS One 6:e20453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angel R, Claus P, Conrad R (2012) Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 6:847–862

    Article  CAS  PubMed  Google Scholar 

  • Arth I, Frenzel P, Conrad R (1998) Denitrification coupled to nitrification in the rhizosphere of rice. Soil Biol Biochem 30:509–515

    Article  CAS  Google Scholar 

  • Aschenbach K, Conrad R, Rehakova K, Dolezal J, Janatkova K, Angel R (2013) Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas. Front Microbiol 4:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Aslund F, Berndt KD, Holmgren A (1997) Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. J Biol Chem 272:30780–30786

    Article  CAS  PubMed  Google Scholar 

  • Bolton H Jr, Fredrickson JK, Elliott LF (1993) Microbial ecology of the rhizosphere, p. 27–63. In Metting FB (ed.), Soil Microbial Ecology. Marcel Dekker, New York, NY

    Google Scholar 

  • Bonam D, Lehman L, Roberts GP, Ludden PW (1989) Regulation of carbon-monoxide dehydrogenase and hydrogenase in Rhodospirillum-rubrum – effects of CO and oxygen on synthesis and activity. J Bacteriol 171:3102–3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrel G, O’Toole PW, Harris HMB, Peyret P, Brugere JF, Gribaldo S (2013) Phylogenomic data support a seventh order of Methylotrophic methanogens and provide insights into the evolution of Methanogenesis. Genome Biol Evol 5:1769–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowen TL, Union J, Tumbula DL, Whitman WB (1997) Cloning and phylogenetic analysis of the genes encoding acetohydroxyacid synthase from the archaeon Methanococcus aeolicus. Gene 188:77–84

    Article  CAS  PubMed  Google Scholar 

  • Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochim Biophys Acta 1827:94–113

    Article  CAS  PubMed  Google Scholar 

  • Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    Article  CAS  PubMed  Google Scholar 

  • Chin KJ, Lukow T, Conrad R (1999) Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Appl Environ Microbiol 65:2341–2349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chin KJ, Lueders T, Friedrich MW, Klose M, Conrad R (2004) Archaeal community structure and pathway of methane formation on rice roots. Microb Ecol 47:59–67

    Article  CAS  PubMed  Google Scholar 

  • Cicerone RJ, Delwiche CC, Tyler SC, Zimmerman PR (1992) Methane emissions from California rice paddies with varied treatments. Glob Biogeochem Cycles 6:233–248

    Article  CAS  Google Scholar 

  • Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202

    Article  CAS  Google Scholar 

  • Conrad R (2004) Methanogenic microbial communities associated with aquatic plants. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer-Verlag, Berlin, pp 35–50

    Google Scholar 

  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292

    Article  CAS  PubMed  Google Scholar 

  • Conrad R, Klose M (1999) Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots. FEMS Microbiol Ecol 30:147–155

    Article  CAS  PubMed  Google Scholar 

  • Conrad R, Klose M (2000) Selective inhibition of reactions involved in methanogenesis and fatty acid production on rice roots. FEMS Microbiol Ecol 34:27–34

    Article  CAS  PubMed  Google Scholar 

  • Conrad R, Klose M, Claus P (2002) Pathway of CH4 formation in anoxic rice field soil and rice roots determined by C-13-stable isotope fractionation. Chemosphere 47:797–806

    Article  CAS  PubMed  Google Scholar 

  • Conrad R, Erkel C, Liesack W (2006) Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil. Curr Opin Biotechnol 17:262–267

    Article  CAS  PubMed  Google Scholar 

  • Costa KC, Wong PM, Wang TS, Lie TJ, Dodsworth JA, Swanson I, Burn JA, Hackett M, Leigh JA (2010) Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase. Proc Natl Acad Sci USA 107:11050–11055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalhus B, Laerdahl JK, Backe PH, Bjoras M (2009) DNA base repair – recognition and initiation of catalysis. FEMS Microbiol Rev 33:1044–1078

    Article  CAS  PubMed  Google Scholar 

  • Dannenberg S, Conrad R (1999) Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry 45:53–71

    Google Scholar 

  • Erkel C, Kemnitz D, Kube M, Ricke P, Chin KJ, Dedysh S, Reinhardt R, Conrad R, Liesack W (2005) Retrieval of first genome data for rice cluster I methanogens by a combination of cultivation and molecular techniques. FEMS Microbiol Ecol 53:187–204

    Article  CAS  PubMed  Google Scholar 

  • Erkel C, Kube M, Reinhardt R, Liesack W (2006) Genome of Rice Cluster I archaea-the key methane producers in the rice rhizosphere. Science 313:370–372

    Article  CAS  PubMed  Google Scholar 

  • Fey A, Conrad R (2003) Effect of temperature on the rate limiting step in the methanogenic degradation pathway in rice field soil. Soil Biol Biochem 35:1–8

    Article  CAS  Google Scholar 

  • Fey A, Chin KJ, Conrad R (2001) Thermophilic methanogens in rice field soil. Environ Microbiol 3:295–303

    Article  CAS  PubMed  Google Scholar 

  • Fournier M, Zhang Y, Wildschut JD, Dolla A, Voordouw JK, Schriemer DC, Voordouw G (2003) Function of oxygen resistance proteins in the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J Bacteriol 185:71–79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galand PE, Saarnio S, Fritze H, Yrjala K (2002) Depth related diversity of methanogen Archaea in Finnish oligotrophic fen. FEMS Microbiol Ecol 42:441–449

    Article  CAS  PubMed  Google Scholar 

  • Gan Y, Qiu Q, Liu P, Rui J, Lu Y (2012) Syntrophic oxidation of propionate in rice field soil at 15 and 30 degrees C under methanogenic conditions. Appl Environ Microbiol 78:4923–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grein F, Ramos AR, Venceslau SS, Pereira IAC (2013) Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism. BBA-Bioenergetics 1827:145–160

    Article  CAS  PubMed  Google Scholar 

  • Grosskopf R, Janssen PH, Liesack W (1998a) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960–969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grosskopf R, Stubner S, Liesack W (1998b) Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 64:4983–4989

    CAS  PubMed Central  Google Scholar 

  • Haefele SM, Nelson A, Hijmans RJ (2014) Soil quality and constraints in global rice production. Geoderma 235–236:250–259

    Article  CAS  Google Scholar 

  • Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE et al (2004) Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 186:6956–6969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzapfelpschorn A, Conrad R, Seiler W (1986) Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil 92:223–233

    Article  CAS  Google Scholar 

  • Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imlay JA (2015) Diagnosing oxidative stress in bacteria: not as easy as you might think. Curr Opin Microbiol 24C:124–131

    Article  CAS  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  • Jenney FE, Verhagen MFJM, Cui XY, Adams MWW (1999) Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science 286:306–309

    Article  CAS  PubMed  Google Scholar 

  • Jurgens G, Glockner FO, Amann R, Saano A, Montonen L, Likolammi M, Munster U (2000) Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol Ecol 34:45–56

    CAS  PubMed  Google Scholar 

  • Kaster AK, Goenrich M, Seedorf H, Liesegang H, Wollherr A, Gottschalk G, Thauer RK (2011) More than 200 genes required for methane formation from H2 and CO2 and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. Archaea 2011:973848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimura M (1997) Sources of methane emitted from paddy fields. Nutr Cycl Agroecosyst 49:153–161

    Article  CAS  Google Scholar 

  • Kluber HD, Conrad R (1998) Inhibitory effects of nitrate, nitrite, NO and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii. FEMS Microbiol Ecol 25:331–339

    Article  CAS  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2007) Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 10:504–509

    Article  CAS  PubMed  Google Scholar 

  • Lehmann-Richter S, Grosskopf R, Liesack W, Frenzel P, Conrad R (1999) Methanogenic archaea and CO2-dependent methanogenesis on washed rice roots. Environ Microbiol 1:159–166

    Article  CAS  PubMed  Google Scholar 

  • Leigh JA, Dodsworth JA (2007) Nitrogen regulation in bacteria and archaea. Annu Rev Microbiol 61:349–377

    Article  CAS  PubMed  Google Scholar 

  • Lie TJ, Leigh JA (2007) Genetic screen for regulatory mutations in Methanococcus maripaludis and its use in identification of induction-deficient mutants of the eulyarchaeal repressor NrpR. Appl Environ Microbiol 73:6595–6600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lie TJ, Dodsworth JA, Nickle DC, Leigh JA (2007) Diverse homologues of the archaeal repressor NrpR function similarly in nitrogen regulation. FEMS Microbiol Lett 271:281–288

    Article  CAS  PubMed  Google Scholar 

  • Lie TJ, Costa KC, Lupa B, Korpole S, Whitman WB, Leigh JA (2012) Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis. Proc Natl Acad Sci USA 109:15473–15478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liesack W, Schnell S, Revsbech NP (2000) Microbiology of flooded rice paddies. FEMS Microbiol Rev 24:625–645

    Article  CAS  PubMed  Google Scholar 

  • Lin IJ, Gebel EB, Machonkin TE, Westler WM, Markley JL (2005) Changes in hydrogen-bond strengths explain reduction potentials in 10 rubredoxin variants. Proc Natl Acad Sci USA 102:14581–14586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindau CW, Bollich PK, Delaune RD, Patrick WH, Law VJ (1991) Effect of urea fertilizer and environmental-factors on CH4 emissions from a Louisiana, USA Rice Field. Plant Soil 136:195–203

    Article  CAS  Google Scholar 

  • Liu PF, Lu YH (2018) Concerted metabolic shifts give new insights into the syntrophic mechanism between propionate-fermenting Pelotomaculum thermopropionicum and hydrogenotrophic Methanocella conradii. Front Microbiol 9:1551

    Google Scholar 

  • Liu YC, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Qiu Q, Lu Y (2011) Syntrophomonadaceae-affiliated species as active butyrate-utilizing syntrophs in paddy field soil. Appl Environ Microbiol 77:3884–3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YC, Beer LL, Whitman WB (2012) Methanogens: a window into ancient sulfur metabolism. Trends Microbiol 20:251–258

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Yang YX, Lv Z, Lu Y (2014) Response of a rice paddy methanogen to syntrophic growth as revealed by transcriptional analyses. Appl Environ Microbiol 80:9

    Article  CAS  Google Scholar 

  • Liu DY, Ishikawa H, Nishida M, Tsuchiya K, Takahashi T, Kimura M, Asakawa S (2015) Effect of paddy-upland rotation on methanogenic archaeal community structure in paddy field soil. Microb Ecol 69:160–168

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Conrad R (2005) In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science 309:3

    Google Scholar 

  • Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Lu Y (2012a) Complete genome sequence of a thermophilic methanogen, Methanocella conradii HZ254, isolated from Chinese rice field soil. J Bacteriol 194:2398–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Lu Y (2012b) Methanocella conradii sp. nov., a thermophilic, obligate hydrogenotrophic methanogen, isolated from Chinese rice field soil. PLoS One 7:e35279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Wassmann R, Neue HU, Huang C (1999) Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants. Biogeochemistry 47:6

    Google Scholar 

  • Lu Y, Wassmann R, Neue HU, Huang C (2000a) Dissolved organic carbon and methane emissions from a rice paddy fertilized with ammonium and nitrate. J Environ Qual 29:8

    Article  Google Scholar 

  • Lu Y, Wassmann R, Neue HU, Huang C (2000b) Dynamics of dissolved organic carbon and methane emissions in a flooded rice soil. Soil Sci Soc Am J 64:7

    Article  Google Scholar 

  • Lu Y, Wassmann R, Neue HU, Huang C, Bueno CS (2000c) Methanogenic responses to exogenous substrates in anaerobic rice soils. Soil Biol Biochem 32:8

    Article  Google Scholar 

  • Lu Y, Watanabe A, Kimura M (2002) Contribution of plant-derived carbon to soil microbial biomass dynamics in a paddy rice microcosm. Biol Fertil Soils 36:136–142

    Article  CAS  Google Scholar 

  • Lu Y, Lueders T, Friedrich MW, Conrad R (2005) Detecting active methanogenic populations on rice roots using stable isotope probing. Environ Microbiol 7:11

    Article  Google Scholar 

  • Lueders T, Friedrich M (2000) Archaeal population dynamics during sequential reduction processes in rice field soil. Appl Environ Microbiol 66:2732–2742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lueders T, Chin KJ, Conrad R, Friedrich M (2001) Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 3:194–204

    Article  CAS  PubMed  Google Scholar 

  • Lueders T, Pommerenke B, Friedrich MW (2004) Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl Environ Microbiol 70:5778–5786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo HW, Zhang H, Suzuki T, Hattori S, Kamagata Y (2002) Differential expression of methanogenesis genes of Methanothermobacter thermoautotrophicus (formerly Methanobacterium thermoautotrophicum) in pure culture and in cocultures with fatty acid-oxidizing syntrophs. Appl Environ Microbiol 68:1173–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Lyu Z, Lu Y (2015) Comparative genomics of three Methanocellales strains reveal novel taxonomic and metabolic features. Environ Microbiol Rep 7:526–537

    Article  CAS  PubMed  Google Scholar 

  • Lyu Z, Lu YH (2018) Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments. ISME J 12:411–423

    Article  PubMed  CAS  Google Scholar 

  • Makarova KS, Koonin EV (2003) Filling a gap in the central metabolism of archaea: prediction of a novel aconitase by comparative-genomic analysis. FEMS Microbiol Lett 227:17–23

    Article  CAS  PubMed  Google Scholar 

  • Manevich Y, Sweitzer T, Pak JH, Feinstein SI, Muzykantov V, Fisher AB (2002) 1-Cys peroxiredoxin overexpression protects cells against phospholipid peroxidation-mediated membrane damage. Proc Natl Acad Sci USA 99:11599–11604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minoda T, Kimura M (1994) Contribution of photosynthesized carbon to the methane emitted from paddy fields. Geophys Res Lett 21:2007–2010

    Article  CAS  Google Scholar 

  • Neubauer SC, Emerson D, Megonigal JP (2002) Life at the energetic edge: kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere. Appl Environ Microbiol 68:3988–3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neue HU, Wassmann R, Kludze HK, Bujun W, Lantin RS (1997) Factors and processes controlling methane emissions from rice fields. Nutr Cycl Agroecosyst 49:111–117

    Article  CAS  Google Scholar 

  • Peng J, Lu Z, Rui J, Lu Y (2008) Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Appl Environ Microbiol 74:2894–2901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossmann R, Sawers G, Bock A (1991) Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH – definition of the formate regulon. Mol Microbiol 5:2807–2814

    Article  CAS  PubMed  Google Scholar 

  • Rui J, Qiu Q, Lu Y (2011) Syntrophic acetate oxidation under thermophilic methanogenic condition in Chinese paddy field soil. FEMS Microbiol Ecol 77:264–273

    Article  CAS  PubMed  Google Scholar 

  • Sakai S, Imachi H, Sekiguchi Y, Ohashi A, Harada H, Kamagata Y (2007) Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl Environ Microbiol 73:4326–4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y (2008) Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol 58:929–936

    Article  PubMed  Google Scholar 

  • Sakai S, Conrad R, Liesack W, Imachi H (2010) Methanocella arvoryzae sp. nov., a hydrogenotrophic methanogen isolated from rice field soil. Int J Syst Evol Microbiol 60:2918–2923

    Article  CAS  PubMed  Google Scholar 

  • Sakai S, Takaki Y, Shimamura S, Sekine M, Tajima T, Kosugi H, Ichikawa N, Tasumi E, Hiraki AT, Shimizu A et al (2011) Genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultivated representative of the order Methanocellales. PLoS One 6:e22898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sass RL, Fisher FM, Harcombe PA, Turner FT (1991) Mitigation of methane emissions from rice fields: possible adverse effects of incorporated rice straw. Glob Biogeochem Cycles 5:275–287

    Article  Google Scholar 

  • Saunois M, Jackson RB, Bousquet P, Poulter B, Canadell JG (2016) The growing role of methane in anthropogenic climate change. Environ Res Lett 11:120207

    Article  Google Scholar 

  • Schaefer H, Fletcher SEM, Veidt C, Lassey KR, Brailsford GW, Bromley TM, Dlugokencky EJ, Michel SE, Miller JB, Levin I et al (2016) A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by (CH4)-C-13. Science 352:80–84

    Article  CAS  PubMed  Google Scholar 

  • Scheid D, Stubner S (2001) Structure and diversity of Gram-negative sulfate-reducing bacteria on rice roots. FEMS Microbiol Ecol 36:175–183

    Article  CAS  PubMed  Google Scholar 

  • Seedorf H, Dreisbach A, Hedderich R, Shima S, Thauer RK (2004) F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F-420-dependent enzyme involved in O-2 detoxification. Arch Microbiol 182:126–137

    Article  CAS  PubMed  Google Scholar 

  • Silaghi-Dumitrescu R, Ng KY, Viswanathan R, Kurtz DM (2005) A flavo-diiron protein from Desulfovibrio vulgaris with oxidase and nitric oxide reductase activities. Evidence for an in vivo nitric oxide scavenging function. Biochemistry 44:3572–3579

    Article  CAS  PubMed  Google Scholar 

  • Sizova MV, Panikov NS, Tourova TP, Flanagan PW (2003) Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a Sphagnum peat bog. FEMS Microbiol Ecol 45:301–315

    Article  CAS  PubMed  Google Scholar 

  • Sneppen K, Pedersen S, Krishna S, Dodd I, Semsey S (2010) Economy of operon formation: cotranscription minimizes shortfall in protein complexes. MBio 1:e00177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Susanti D, Wong JH, Vensel WH, Loganathan U, DeSantis R, Schmitz RA, Balsera M, Buchanan BB, Mukhopadhyay B (2014) Thioredoxin targets fundamental processes in a methane-producing archaeon, Methanocaldococcus jannaschii. Proc Natl Acad Sci USA 111:2608–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiol 144:2377–2406

    Article  CAS  Google Scholar 

  • Thauer RK (2012) The Wolfe cycle comes full circle. Proc Natl Acad Sci USA 109:15084–15085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H-2 storage. Annu Rev Biochem 79(79):507–536

    Article  CAS  PubMed  Google Scholar 

  • Vandergon HACD, Neue HU (1995) Influence of organic-matter incorporation on the methane emission from a wetland rice field. Glob Biogeochem Cycles 9:11–22

    Article  Google Scholar 

  • Wind T, Stubner S, Conrad R (1999) Sulfate-reducing bacteria in rice field soil and on rice roots. Syst Appl Microbiol 22:269–279

    Article  CAS  PubMed  Google Scholar 

  • Yagi K, Minami K (1990) Effect of organic-matter application on methane emission from some Japanese paddy fields. Soil Sci Plant Nutr 36:599–610

    Article  CAS  Google Scholar 

  • Yu JP, Ladapo J, Whitman WB (1994) Pathway of glycogen-metabolism in Methanococcus-maripaludis. J Bacteriol 176:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation (41630857) and the National Key Research and Development Program of China (2016YFD0200306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahai Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lu, Y. (2019). Metagenomics of Methanogenic Communities in Rice Paddy: The Importance of Methanocella. In: Stams, A., Sousa, D. (eds) Biogenesis of Hydrocarbons. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-78108-2_14

Download citation

Publish with us

Policies and ethics