Skip to main content

Advanced Hydrogel Structures

  • Living reference work entry
  • First Online:
Functional Biopolymers

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

  • 300 Accesses

Abstract

Conventional hydrogels have been successfully used in a range of different applications. However, the weak mechanics, inhomogeneous network structures, and poorly controlled responses of conventional hydrogels to changes in their environment have limited the applications of conventional hydrogels across a broad range of potential uses. Herein, we describe several newer types of hydrogel structures and morphologies that have been developed to address these key limitations of conventional hydrogels, including environmentally responsive hydrogels, homogeneous network hydrogels, interpenetrating network hydrogels, double network hydrogels, nanocomposite hydrogels, self-healing/self-adhesive hydrogels, and shape memory hydrogels. The fundamentals of both the design and structure of such materials as well as the key application areas in which such materials have been used to solve key technical challenges are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CD:

Cyclodextrin

CNCs:

Cellulose nanocrystals

IPN:

Interpenetrating network

IR:

Infrared

LCST:

Lower critical solution temperature

LDHs:

Layered double hydroxides

l-Dopa:

l-3, 4-dihydroxyphenylalanine

NPs:

Nanoparticles

PAA:

Poly(acrylic acid)

PAAm:

Poly(acrylamide)

PAMPS:

Poly(2-acrylamido-2-methylpropanesulfonic acid)

PCL:

Poly(ɛ -caprolactone)

PNIPAM:

Poly(N-isopropylacrylamide)

POEGMA:

Poly(oligoethylene glycol methacrylate)

PPy:

Polypyrrole

PS:

Polystyrene

PVA:

Poly(vinyl alcohol)

QDs:

Quantum dots

SMPs:

Shape memory polymers

SPHs:

Superporous hydrogels

SPIONs:

Superparamagnetic iron oxide nanoparticles

SPR:

Surface plasmon resonance

UCST:

Upper critical solution temperature

UV:

Ultraviolet

VPT:

Volume phase transition

References

  1. E. Caló, V.V. Khutoryanskiy, Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 65, 252–267 (2015)

    Article  CAS  Google Scholar 

  2. T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida, S. Suzuki, N. Saskai, M. Shibayama, U.I. Chung, Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41, 5379–5384 (2008)

    Article  CAS  Google Scholar 

  3. P. Gupta, K. Vermani, S. Garg, Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7(10), 569–579 (2002)

    Article  PubMed  CAS  Google Scholar 

  4. J.M. Knipe, N.A. Peppas, Multi-responsive hydrogels for drug delivery and tissue engineering applications. Regen. Biomater. 1(1), 57–65 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  5. T. Hoare, R. Pelton, Highly pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37, 2544–2550 (2004)

    Article  CAS  Google Scholar 

  6. P. Gupta, K. Vermani, S. Garg, Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7(1), 569–579 (2002)

    Article  PubMed  CAS  Google Scholar 

  7. T. Tanaka, Phase transitions in gels and a single polymer. Polymer 20, 1404–1412 (1979)

    Article  CAS  Google Scholar 

  8. P. Chibante, R.H. Pelton, Preparation of aqueous latices with N-Isopropylacrylamide. Colloids Surf. 20, 241–256 (1986)

    Google Scholar 

  9. Y. Maeda, T. Nakamura, I. Ikeda, Changes in the hydration states of poly(N-alkylacrylamide)s during their phase transitions in water observed by FTIR spectroscopy. Macromolecules 34, 1391–1399 (2001)

    Article  CAS  Google Scholar 

  10. S. Pfeifer, J.F. Lutz, A facile procedure for controlling monomer sequence distribution in radical chain polymerizations. J. Am. Chem. Soc. 129, 9542–9543 (2007)

    Article  PubMed  CAS  Google Scholar 

  11. N.A. Cortez-Lemus, A. Licea-Claverie, Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog. Polym. Sci. 53, 1–51 (2016)

    Article  CAS  Google Scholar 

  12. I.M. Diniz, C. Chen, X. Xu, S. Ansari, H.H. Zadeh, M.M. Marques, S. Shi, A. Moshaverinia, Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. J. Mater. Sci. Mater. Med. 26(3), 152–162 (2015)

    Article  CAS  Google Scholar 

  13. M. Jamard, T. Hoare, H. Sheardown, Nanogels of methylcellulose hydrophobized with N-tert-butylacrylamide for ocular drug delivery. Drug Deliv. Transl. Res. 6(6), 648–659 (2016)

    Article  PubMed  CAS  Google Scholar 

  14. S.R. MacEwan, A. Chilkoti, Elastin-like polypeptides: biomedical applications of tunable biopolymers. Biopolymers 94(1), 60–77 (2010)

    Article  PubMed  CAS  Google Scholar 

  15. X. Zhou, L. Weng, Q. Chen, J. Zhang, D. Shen, Z. Li, M. Shao, J. Xu, Investigation of pH sensitivity of poly(acrylic acid-co-acrylamide) hydrogel. Polym. Int. 52(7), 1153–1157 (2003)

    Article  CAS  Google Scholar 

  16. M. Boustta, P.E. Colombo, S. Lenglet, S. Poujol, M. Vert, Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. J. Control. Release 174, 1–6 (2014)

    Article  PubMed  CAS  Google Scholar 

  17. J. Hasa, M. Ilavsky, K. Dusek, Deformational, swelling, and potentiometric behavior of ionized poly( methacrylic acid) gels. I. Theory. J. Polym. Sci. Polym. Phys. 13, 253–262 (1975)

    Article  CAS  Google Scholar 

  18. E. Merino, M. Ribagorda, Control over molecular motion using the cis-trans photoisomerization of the azo group. Beilstein J. Org. Chem. 8, 1071–1090 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. M.M. Russew, S. Hecht, Photoswitches: from molecules to materials. Adv. Mater. 22(31), 3348–3360 (2010)

    Article  PubMed  CAS  Google Scholar 

  20. D. Klinger, Light-Sensitive Polymeric Nanoparticles Based on Photo-Cleavable Chromophores. Springer Theses. I. (Springer International Publishing, Cham) XVII, 224. (2013). https://doi.org/10.1007/978-3-319-00446-4. https://www.springer.com/gp/book/9783319004457

  21. Y. Guan, Y. Zhang, Boronic acid-containing hydrogels: synthesis and their applications. Chem. Soc. Rev. 42(20), 8106–8121 (2013)

    Article  PubMed  CAS  Google Scholar 

  22. A. Kim, S. Mujumdar, R. Siegel, Swelling properties of hydrogels containing phenylboronic acids. Chemosensors 2(1), 1–12 (2013)

    Article  CAS  Google Scholar 

  23. J.W. Tomsho, A. Pal, D.G. Hall, S.J. Benkovic, Ring structure and aromatic substituent effects on the pKa of the Benzoxaborole pharmacophore. ACS Med. Chem. Lett. 3(1), 48–52 (2012)

    Article  PubMed  CAS  Google Scholar 

  24. T. Hoare, R. Pelton, Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity. Biomacromolecules 9, 733–740 (2008)

    Article  PubMed  CAS  Google Scholar 

  25. S. Kang, Y.H. Bae, A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. J. Control. Release 86, 115–121 (2003)

    Article  PubMed  CAS  Google Scholar 

  26. T. Miyata, A. Jikihara, K. Nakamae, A.S. Hoffman, Preparation of reversibly glucose-responsive hydrogels by covalent immobilization of lectin in polymer networks having pendant glucose. J. Biomater. Sci. Polym. Ed. 15(9), 1085–1098 (2004)

    Article  PubMed  CAS  Google Scholar 

  27. T. Miyata, N. Asami, T. Uragami, A reversibly antigen-responsive hydrogel. Nature 399, 766–769 (1999)

    Article  PubMed  CAS  Google Scholar 

  28. M.E. Byrne, K. Park, N.A. Peppas, Molecular imprinting within hydrogels. Adv. Drug Deliv. Rev. 54, 149–161 (2002)

    Article  PubMed  CAS  Google Scholar 

  29. M.C. Koetting, J.T. Peters, S.D. Steichen, N.A. Peppas, Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci. Eng. 93, 1–49 (2015)

    Article  Google Scholar 

  30. Y. Noda, Y. Hayashi, K. Ito, From topological gels to slide-ring materials. J. Appl. Polym. Sci. 131(15) (2014). https://doi.org/10.1002/APP.40509

  31. G. Fleury, G. Schlatter, C. Brochon, C. Travelet, A. Lapp, P. Lindner, G. Hadziioannou, Topological polymer networks with sliding cross-link points: the “Sliding Gels”. Relationships between their molecular structure and viscoelastic as well as the swelling properties. Macromolecules 40(3), 535–543 (2007)

    Article  CAS  Google Scholar 

  32. Y. Okumura, K. Ito, The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater. 13(7), 485–487 (2001)

    Article  CAS  Google Scholar 

  33. E.A. Appel, F. Biedermann, U. Rauwald, S.T. Jones, J.M. Zayed, O.A. Scherman, Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. J. Am. Chem. Soc. 132, 14251–14260 (2010)

    Article  PubMed  CAS  Google Scholar 

  34. C. Zhao, Y. Domon, Y. Okumura, S. Okabe, M. Shibayama, K. Ito, Sliding mode of cyclodextrin in polyrotaxane and slide-ring gel. J. Phys. Condens. Matter 17(31), S2841–S2846 (2005)

    Article  CAS  Google Scholar 

  35. A.B.. Imran, K. Esaki, H. Gotoh, T. Seki, K. Ito, Y. Sakai, Y. Takeoka, Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat. Commun. 5 (2014). https://doi.org/10.1038/ncomms6124

  36. J. Henise, B.R. Hearn, G.W. Ashley, D.V. Santi, Biodegradable tetra-PEG hydrogels as carriers for a releasable drug delivery system. Bioconjug. Chem. 26(2), 270–278 (2015)

    Article  PubMed  CAS  Google Scholar 

  37. H. Jia, Z. Huang, Z. Li, Z. Zheng, X. Wang, One-pot synthesis of highly mechanical and redox-degradable polyurethane hydrogels based on tetra-PEG and disulfide/thiol chemistry. RSC Adv. 6(54), 48863–48869 (2016)

    Article  CAS  Google Scholar 

  38. D. Klempner, L.H. Sperling, L.A. Utacki, Interpenetrating networks: an overview, in Interpenetrating Polymer Networks, vol 239. (American Chemical Society, Washington, DC, 1994). https://doi.org/10.1021/ba-1994-0239. https://pubs.acs.org/isbn/9780841225282

  39. L.H. Sperling, Recent advances in interpenetrating polymer networks. Polym. Eng. Sci. 25(9), 517–520 (1985)

    Article  CAS  Google Scholar 

  40. K.C. Frisch, A topologically interpenetration elastomeric network. J. Polym. Sci. B Polym. Lett. 7, 775–779 (1969)

    Article  CAS  Google Scholar 

  41. L.H. Sperling, D.W. Freidman, Synthesis and mechanical behavior of interpenetrating polymer networks: Poly(ethyl acrylate) and polystyrene. J. Polym. Sci. A2 Polym. Phys. 7(2), 425–427 (1969)

    Article  CAS  Google Scholar 

  42. L.H. Sperling, An overview of interpenetrating networks, in Polymeric Materials Encyclopedia, ed. by J.C. Salamone (CRC Press, Boca Raton, 1996)

    Google Scholar 

  43. T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: progress and challenges. Polymer 49(8), 1993–2007 (2008)

    Article  CAS  Google Scholar 

  44. E.S. Dragan, Design and applications of interpenetrating polymer network hydrogels. A review. Chem. Eng. J. 243, 572–590 (2014)

    Article  CAS  Google Scholar 

  45. T. Gilbert, N.M.B. Smeets, T. Hoare, Injectable interpenetrating network hydrogels via kinetically orthogonal reactive mixing of functionalized polymeric precursors. ACS Macro Lett. 4(10), 1104–1109 (2015)

    Article  CAS  Google Scholar 

  46. Y. Qiu, K. Park, Superporous IPN hydrogels having enhanced mechanical properties. AAPS PharmSciTech. 4(4), 406–412 (2003)

    Article  PubMed Central  CAS  Google Scholar 

  47. K.C. Frisch, D. Klempner, H.L. Frisch, Recent advances in polymer alloys and IPN technology. Mater. Des. 4, 821–827 (1983)

    Article  Google Scholar 

  48. Y. Zhang, J. Liu, L. Huang, Z. Wang, L. Wang, Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery. Sci. Rep. 5, 12374 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  49. Y.H. Bae, T. Okano, C. Ebert, S. Heiber, S. Dave, S.W. Kim, Heterogeneous interpenetrating polymer networks for drug delivery. J. Control. Release 16, 189–196 (1991)

    Article  CAS  Google Scholar 

  50. J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15(14), 1155–1158 (2003)

    Article  CAS  Google Scholar 

  51. T. Nakajima, H. Furukawa, Y. Tanaka, T. Kurokawa, Y. Osada, J.P. Gong, True chemical structure of double network hydrogels. Macromolecules 42, 2184–2189 (2009)

    Article  CAS  Google Scholar 

  52. J.P. Gong, Why are double network hydrogels so tough? Soft Matter 6(12), 2583–2590 (2010)

    Article  CAS  Google Scholar 

  53. R.E. Webber, C. Creton, Large strain hysteresis and Mullins effect of tough double-network hydrogels. Macromolecules 40(8), 2919–2927 (2007)

    Article  CAS  Google Scholar 

  54. Q.M. Yu, Y. Tanaka, H. Furukawa, T. Kurokawa, J.P. Gong, Direct observation of damage zone around crack tips in double-network gels. Macromolecules 42(12), 3852–3855 (2009)

    Article  CAS  Google Scholar 

  55. Q. Chen, H. Chen, L. Zhu, J. Zheng, Fundamentals of double network hydrogels. J. Mater. Chem. B 3(18), 3654–3676 (2015)

    Article  CAS  PubMed  Google Scholar 

  56. J.Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, Z. Suo, Highly stretchable and tough hydrogels. Nature 489(7414), 133–136 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Q. Chen, L. Zhu, C. Zhao, Q. Wang, J. Zheng, A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv. Mater. 25(30), 4171–4176 (2013)

    Article  PubMed  CAS  Google Scholar 

  58. P. Schexnailder, G. Schmidt, Nanocomposite polymer hydrogels. Colloid Polym. Sci. 287(1), 1–11 (2008)

    Article  CAS  Google Scholar 

  59. Y. Liu, H. Meng, S. Konst, R. Sarmiento, R. Rajachar, B.P. Lee, Injectable dopamine-modified poly(ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity. ACS Appl. Mater. Interfaces 6(19), 16982–16992 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. G. Marcelo, M. Lopez-Gonzalez, F. Mendicuti, M.P. Tarazona, M. Valiente, Poly(N-isopropylacrylamide)/gold hybrid hydrogels prepared by catechol redox chemistry. Characterization and smart tunable catalytic activity. Macromolecules 47(17), 6028–6036 (2014)

    Article  CAS  Google Scholar 

  61. V. Pardo-Yissar, R. Gabai, A.N. Shipway, T. Bourenko, I. Willner, Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties. Adv. Mater. 13(17), 1320–1323 (2001)

    Article  CAS  Google Scholar 

  62. C. Wang, N.T. Flynn, R. Langer, Controlled structure and properties of thermoresponsive nanoparticle–hydrogel composites. Adv. Mater. 16(13), 1074–1079 (2004)

    Article  CAS  Google Scholar 

  63. M.A. da Silva, C.A. Dreiss, Soft nanocomposites: nanoparticles to tune gel properties. Polym. Int. 65(3), 268–279 (2016)

    Article  CAS  Google Scholar 

  64. P. Thoniyot, M.J. Tan, A.A. Karim, D.J. Young, X.J. Loh, Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv. Sci. 2(1–2), 1400010 (2015)

    Article  CAS  Google Scholar 

  65. S.R. Sershen, S.L. Westcott, N.J. Halas, J.L. West, Independent optically addressable nanoparticle-polymer optomechanical composites. Appl. Phys. Lett. 80(24), 4609–4611 (2002)

    Article  CAS  Google Scholar 

  66. N. Ravi, H.A. Aliyar, P.D. Hamilton, Hydrogel nanocomposite as a synthetic intra-ocular Lens capable of accommodation. Macromol. Symp. 227(1), 191–202 (2005)

    Article  CAS  Google Scholar 

  67. M. Liu, Y. Ishida, Y. Ebina, T. Sasaki, T. Aida, Photolatently modulable hydrogels using unilamellar titania nanosheets as photocatalytic crosslinkers. Nat. Commun. 4 (2013). https://doi.org/10.1038/ncomms3029

  68. L. Sheeney-Haj-Ichia, G. Sharabi, I. Willner, Control of the electronic properties of thermosensitive poly(N-isopropylacrylamide) and au-nanoparticle/poly(N-isopropylacrylamide) composite hydrogels upon phase transition. Adv. Funct. Mater. 12(1), 27–32 (2002)

    Article  CAS  Google Scholar 

  69. Y. Guo, J.-S. Hu, H.-P. Liang, L.-J. Wan, C.-L. Bai, Highly dispersed metal nanoparticles in porous anodic alumina films prepared by a breathing process of polyacrylamide hydrogel. Chem. Mater. 15, 4332–4336 (2003)

    Article  CAS  Google Scholar 

  70. C.D. Jones, L.A. Lyon, Photothermal patterning of microgel gold nanoparticle composite colloidal crystals. J. Am. Chem. Soc. 125, 460–465 (2003)

    Article  PubMed  CAS  Google Scholar 

  71. P.S. Murthy, Y. Murali Mohan, K. Varaprasad, B. Sreedhar, K. Mohana Raju, First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J. Colloid Interface Sci. 318(2), 217–224 (2008)

    Article  PubMed  CAS  Google Scholar 

  72. Y. Xiang, D. Chen, Preparation of a novel pH-responsive silver nanoparticle/poly(HEMA–PEGMA–MAA) composite hydrogel. Eur. Polym. J. 43(10), 4178–4187 (2007)

    Article  CAS  Google Scholar 

  73. K. Varaprasad, G.S. Mohan Reddy, J. Jayaramudu, R. Sadiku, K. Ramam, S. Sinha Ray, Development of microbial resistant Carbopol nanocomposite hydrogels via a green process. Biomater. Sci. 2(2), 257–263 (2014)

    Article  CAS  PubMed  Google Scholar 

  74. S. Rose, A. Prevoteau, P. Elziere, D. Hourdet, A. Marcellan, L. Leiber, Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505(7483), 382–385 (2014)

    Article  PubMed  CAS  Google Scholar 

  75. D. Zhang, J. Yang, S. Bao, Q. Wu, O. Wang, Semiconductor nanoparticle-based hydrogels prepared via self-initiated polymerization under sunlight, even visible light. Sci. Rep. 3, 1399 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. A. Skardal, J. Zhang, L. McCoard, S. Oottamasathien, G.D. Prestwich, Dynamically crosslinked gold nanoparticle – hyaluronan hydrogels. Adv. Mater. 22(42), 4736–4740 (2010)

    Article  PubMed  CAS  Google Scholar 

  77. H. Wu, G. Yu, L. Pan, N. Liu, M.T. McDowell, Z. Bao, Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013)

    Article  PubMed  CAS  Google Scholar 

  78. F. Zhao, D. Yao, R. Guo, L. Deng, A. Dong, J. Zhang, Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5(4), 2054–2130 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. A. Motealleh, N.S. Kehr, Nanocomposite hydrogels and their applications in tissue engineering. Adv. Healthc. Mater. 6(1) (2017). https://doi.org/10.1002/adhm.201600938

  80. K.A. Juby, C. Dwivedi, M. Kumar, S. Kota, H.S. Misra, P.N. Bajaj, Silver nanoparticle-loaded PVA/gum acacia hydrogel: synthesis, characterization and antibacterial study. Carbohydr. Polym. 89(3), 906–913 (2012)

    Article  PubMed  CAS  Google Scholar 

  81. N. Sahiner, S. Butun, O. Ozay, B. Dibek, Utilization of smart hydrogel-metal composites as catalysis media. J. Colloid Interface Sci. 373(1), 122–128 (2012)

    Article  PubMed  CAS  Google Scholar 

  82. H.L. Abd El-Mohdy, Radiation synthesis of nanosilver/poly vinyl alcohol/cellulose acetate/gelatin hydrogels for wound dressing. J. Polym. Res. 20, 177 (2013). https://doi.org/10.1007/s10965-013-0177-6

    Article  CAS  Google Scholar 

  83. I. Tokarev, I. Tokareva, V. Gopishettu, E. Katz, S. Minko, Specific biochemical-to-optical signal transduction by responsive thin hydrogel films loaded with noble metal nanoparticles. Adv. Mater. 22(12), 1412–1416 (2010)

    Article  PubMed  CAS  Google Scholar 

  84. G.R. Bardajee, Z. Hooshyar, H. Rezanezhad, A novel and green biomaterial based silver nanocomposite hydrogel: synthesis, characterization and antibacterial effect. J. Inorg. Biochem. 117, 367–373 (2012)

    Article  PubMed  CAS  Google Scholar 

  85. Y. Murali Mohan, K. Lee, T. Premkumar, K.E. Geckler, Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48(1), 158–164 (2007)

    Article  CAS  Google Scholar 

  86. J.S. Kim, E. Kuk, K.N. Yu, J.H. Kim, S.J. Park, J.L. Hu, S.H. Kim, Y.K. Park, Y.H. Park, C.Y. Hwang, Y.K. Kim, Y.S. Lee, D.H. Jeong, M.H. Cho, Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1), 95–101 (2007)

    Article  PubMed  CAS  Google Scholar 

  87. E.S. Abdel-Halim, S.S. Al-Deyab, Electrically conducting silver/guar gum/poly(acrylic acid) nanocomposite. Int. J. Biol. Macromol. 69, 456–463 (2014)

    Article  PubMed  CAS  Google Scholar 

  88. P. Saravanan, M. Padmanabha Raju, S. Alam, A study on synthesis and properties of Ag nanoparticles immobilized polyacrylamide hydrogel composites. Mater. Chem. Phys. 103(2–3), 278–282 (2007)

    Article  CAS  Google Scholar 

  89. K. Vimala, K.S. Sivudu, Y.M. Mohan, B. Sreedhar, K. Mohana Raju, Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: a rational methodology for antibacterial application. Carbohydr. Polym. 75(3), 463–471 (2009)

    Article  CAS  Google Scholar 

  90. B. Tyliszczak, A. Drabczyk, S. Kudiacik-Kramarczyk, K. Bialik-Was, R. Kijowska, A. Sobczak-Kupiec, Preparation and cytotoxicity of chitosan-based hydrogels modified with silver nanoparticles. Colloids Surf. B: Biointerfaces 160, 325–330 (2017)

    Article  PubMed  CAS  Google Scholar 

  91. Y.-Q. Ma, J.-Z. Yi, L.-M. Zhang, A facile approach to incorporate silver nanoparticles into dextran-based hydrogels for antibacterial and Catalytical application. J. Macromol. Sci. A 46(6), 643–648 (2009)

    Article  CAS  Google Scholar 

  92. R. Resmi, S. Unnikrishnan, L.K. Krishman, V.K. Krishnan, Synthesis and characterization of silver nanoparticle incorporated gelatin-hydroxypropyl methacrylate hydrogels for wound dressing applications. J. Appl. Polym. Sci. 134(10) (2017). https://doi.org/10.1002/app.44529

  93. E. Marsich, A. Travan, I. Donati, A. Di Luca, M. Benincasa, M. Crosera, S. Paoletti, Biological response of hydrogels embedding gold nanoparticles. Colloids Surf. B: Biointerfaces 83(2), 331–339 (2011)

    Article  PubMed  CAS  Google Scholar 

  94. A.G. Skirtach, C. Dejugnat, D. Braun, A.S. Susha, A.L. Rogach, W. Parak, H. Mohwald, G.B. Sukhorukov, The role of metal nanoparticles in remote release of encapsulated materials. Nano Lett. 5(7), 1371–1377 (2005)

    Article  PubMed  CAS  Google Scholar 

  95. J.-H. Kim, T.R. Lee, Hydrogel-templated growth of large gold nanoparticles: synthesis of thermally responsive hydrogel-nanoparticle composites. Langmuir 23, 6504–6509 (2007)

    Article  PubMed  CAS  Google Scholar 

  96. I. Maity, D.B. Rasale, A.K. Das, Sonication induced peptide-appended bolaamphiphile hydrogels for in situ generation and catalytic activity of Pt nanoparticles. Soft Matter 8(19), 5301–5308 (2012)

    Article  CAS  Google Scholar 

  97. R. Fuhrer, E.K. Athanassiou, N.A. Luechinger, W.J. Stark, Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility. Small 5(3), 383–388 (2009)

    Article  PubMed  CAS  Google Scholar 

  98. J. Liu, J. Wang, Y. Wang, C. Liu, M. Jin, Y. Xu, L. Li, X. Guo, A. Hu, T. Liu, S.F. Lincoln, R.K. Prud’homme, A thermosensitive hydrogel carrier for nickel nanoparticles. Colloids Interf. Sci. Commun 4, 1–4 (2015)

    Article  CAS  Google Scholar 

  99. M.E. Villanueva, A.M. Diez, J.A. Gonzalez, C.J. Perez, M. Orrego, L. Piehl, S. Teves, G.J. Copello, Antimicrobial activity of starch hydrogel incorporated with copper nanoparticles. ACS Appl. Mater. Interfaces 8(25), 16280–16288 (2016)

    Article  PubMed  CAS  Google Scholar 

  100. N. Sahiner, O. Ozay, N. Aktas, E. Inger, J. He, The on demand generation of hydrogen from co-Ni bimetallic nano catalyst prepared by dual use of hydrogel: as template and as reactor. Int. J. Hydrog. Energy 36(23), 15250–15258 (2011)

    Article  CAS  Google Scholar 

  101. A. Tiwari, N. Sharma, Efficiency of superparamagnetic Nano Iron oxide loaded poly(acrylamide-co-maleic acid) hydrogel in Uptaking Cu2+ ions from water. J. Disp. Sci. Technol. 34(10), 1437–1446 (2013)

    Article  CAS  Google Scholar 

  102. O. Korotych, Y. Samchenko, I. Boldeskul, Z. Ulberg, N. Zholobak, L. Sukhodub, N-isopropylacrylamide-based fine-dispersed thermosensitive ferrogels obtained via in-situ technique. Mater. Sci. Eng. C Mater. Biol. Appl. 33(2), 892–900 (2013)

    Article  PubMed  CAS  Google Scholar 

  103. N. Sahiner, O. Ozay, N. Aktas, Aromatic organic contaminant removal from an aqueous environment by p(4-VP)-based materials. Chemosphere 85(5), 832–838 (2011)

    Article  PubMed  CAS  Google Scholar 

  104. H. Yan, L. Yang, Z. Yang, H. Yang, A. Li, R. Cheng, Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions. J. Hazard. Mater. 229–230, 371–380 (2012)

    Article  PubMed  CAS  Google Scholar 

  105. O. Ozay, S. Ekici, Y. Baran, N. Aktas, N. Sahiner, Removal of toxic metal ions with magnetic hydrogels. Water Res. 43(17), 4403–4411 (2009)

    Article  PubMed  CAS  Google Scholar 

  106. M.A. Martins, M.C. Neves, A.C.C. Esteves, P.I. Girginova, A.J. Guiomar, V.S. Amaral, T. Trindale, Biofunctionalized ferromagnetic CoPt3/polymer nanocomposites. Nanotechnology 18(21) (2007). https://doi.org/10.1088/0957-4484/18/21/215609

  107. S.B. Campbell, M. Patenaude, T. Hoare, Injectable superparamagnets: highly elastic and degradable poly(N-isopropylacrylamide)-superparamagnetic iron oxide nanoparticle (SPION) composite hydrogels. Biomacromolecules 14(3), 644–653 (2013)

    Article  PubMed  CAS  Google Scholar 

  108. V.K. Thakur, M.R. Kessler, Self-healing polymer nanocomposite materials: a review. Polymer 69, 369–383 (2015)

    Article  CAS  Google Scholar 

  109. C.R. van den Brom, I. Anac, R.F. Roskamp, M. Retsch, U. Jonas, B. Menges, J.A. Preece, The swelling behaviour of thermoresponsive hydrogel/silica nanoparticle composites. J. Mater. Chem. 20(23), 4827–4839 (2010)

    Article  CAS  Google Scholar 

  110. A.A. Adewunmi, S. Ismail, A.S. Sultan, Carbon nanotubes (CNTs) nanocomposite hydrogels developed for various applications: a critical review. J. Inorg. Organomet. Polym. Mater. 26(4), 717–737 (2016)

    Article  CAS  Google Scholar 

  111. J. Wang, S. Banerji, N. Menegazzo, W. Peng, Q. Zou, K.S. Booksh, Glucose detection with surface plasmon resonance spectroscopy and molecularly imprinted hydrogel coatings. Talanta 86, 133–141 (2011)

    Article  PubMed  CAS  Google Scholar 

  112. J.O. You, D.T. Auguste, Conductive, physiologically responsive hydrogels. Langmuir 26(7), 4607–4612 (2010)

    Article  PubMed  CAS  Google Scholar 

  113. C. Chang, J. Peng, L. Zhang, D.W. Pang, Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J. Mater. Chem. 19(41), 7771–7776 (2009)

    Article  CAS  Google Scholar 

  114. A. Salcher, M.S. Nikolic, S. Casado, M. Velez, H. Weller, B.H. Juarez, CdSe/CdS nanoparticles immobilized on pNIPAm-based microspheres. J. Mater. Chem. 20(7), 1367–1374 (2010)

    Article  CAS  Google Scholar 

  115. J. Yang, C.R. Han, J.F. Duan, F. Xu, R.C. Sun, In situ grafting silica nanoparticles reinforced nanocomposite hydrogels. Nanoscale 5(22), 10858–10863 (2013)

    Article  PubMed  CAS  Google Scholar 

  116. X. Hu, X. Hao, J. Zhang, X. Zhang, P.C. Wang, G. Zou, X.J. Liang, Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release with thermal and pH dually response. J. Mater. Chem. B Mater. Biol. Med. 1(8), 1109–1118 (2013)

    Article  PubMed  CAS  Google Scholar 

  117. G.S. Alvarez, C. Helary, A.M. Mebert, X. Wang, T. Coradin, M.F. Desimone, Antibiotic-loaded silica nanoparticle–collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention. J. Mater. Chem. B 2(29), 4660–4670 (2014)

    Article  CAS  PubMed  Google Scholar 

  118. L.Z. Zhao, C.H. Zhou, J. Wang, D.S. Tong, W.H. Yu, H. Wang, Recent advances in clay mineral-containing nanocomposite hydrogels. Soft Matter 11(48), 9229–9246 (2015)

    Article  PubMed  CAS  Google Scholar 

  119. M. Irani, H. Ismail, Z. Ahmad, Preparation and properties of linear low-density polyethylene-g-poly (acrylic acid)/organo-montmorillonite superabsorbent hydrogel composites. Polym. Test. 32(3), 502–512 (2013)

    Article  CAS  Google Scholar 

  120. A.S. Ozcan, B. Erdem, A. Ozcan, Adsorption of Acid Blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite. J. Colloid Interface Sci. 280(1), 44–54 (2004)

    Article  PubMed  CAS  Google Scholar 

  121. K.J. De France, T. Hoare, E.D. Cranston, Review of hydrogels and aerogels containing nanocellulose. Chem. Mater. 29(11), 4609–4631 (2017)

    Article  CAS  Google Scholar 

  122. K.J. De France, K.G. Yager, K.J.W. Chan, B. Corbett, E.D. Cranston, T. Hoare, Injectable anisotropic nanocomposite hydrogels direct in situ growth and alignment of myotubes. Nano Lett. 17(10), 6487–6495 (2017)

    Article  PubMed  CAS  Google Scholar 

  123. R. Sanna, D. Sanna, V. Alzari, D. Nuvoli, S. Scognamillo, M. Piccinini, M. Lazzari, M. Gioffredi, E. Gioffredi, G. Malucelli, A. Mariani, Synthesis and characterization of graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-vinylcaprolactam) prepared by frontal polymerization. J. Polym. Sci. A Polym. Chem. 50(19), 4110–4118 (2012)

    Article  CAS  Google Scholar 

  124. A.O. Moughton, M.A. Hillmyer, T.P. Lodge, Multicompartment block polymer micelles. Macromolecules 45(1), 2–19 (2012)

    Article  CAS  Google Scholar 

  125. D. Sivakumaran, D. Maitland, T. Hoare, Injectable microgel-hydrogel composites for prolonged small-molecule drug delivery. Biomacromolecules 12(11), 4112–4120 (2011)

    Article  PubMed  CAS  Google Scholar 

  126. R.T. Chacko, J. Ventura, J. Zhuang, S. Thayumanavan, Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv. Drug Deliv. Rev. 64(9), 836–851 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. G.L. Li, H. Mohwald, D.G. Shchukin, Precipitation polymerization for fabrication of complex core–shell hybrid particles and hollow structures. Chem. Soc. Rev. 42(8), 3628–3646 (2013)

    Article  PubMed  CAS  Google Scholar 

  128. A.D. Schlüter, A. Halperin, M. Kroger, D. Vlassopoulos, G. Wegner, B. Zhang, Dendronized polymers: molecular objects between conventional linear polymers and colloidal particles. ACS Macro Lett. 3(10), 991–998 (2014)

    Article  CAS  Google Scholar 

  129. T.C.B. McLeish, Macromolecular Engineering: Precise Synthesis, Materials Properties, Applications (Wiley-VCH, Weinheim, 2007)

    Google Scholar 

  130. M. Emmelius, G. Horpel, H. Ringsdorf, B. Schmidt, in Polymeric micelles and liposomes as potential drug carriers, Polymers in Medicine II: Biomedical and Pharmaceutical Applications, ed. by E. Chiellini, C. Migliaresi, L. Nicolais (Springer, Boston, 1986), pp. 313–331

    Google Scholar 

  131. N. Bait, B. Grassl, C. Derail, A. Benaboura, Hydrogel nanocomposites as pressure-sensitive adhesives for skin-contact applications. Soft Matter 7, 2025–2032 (2011)

    Article  CAS  Google Scholar 

  132. R.C. Luo, Z.H. Lim, W. Li, P. Shi, C.H. Chen, Near-infrared light triggerable deformation-free polysaccharide double network hydrogels. Chem. Commun. 50(53), 7052–7055 (2014)

    Article  CAS  Google Scholar 

  133. D.L. Taylor, M. In Het, Panhuis, self-healing hydrogels. Adv. Mater. 28(41), 9060–9093 (2016)

    Article  PubMed  CAS  Google Scholar 

  134. Z. Wei, J.H. Yang, J. Zhou, F. Xu, M. Zrinyi, P.H. Dussault, Y. Osada, Y.M. Chen, Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem. Soc. Rev. 43(23), 8114–8131 (2014)

    Article  PubMed  CAS  Google Scholar 

  135. D.C. Tuncaboylu, M. Sahin, A. Argun, W. Opperman, O. Okay, Dynamics and large strain behavior of self-healing hydrogels with and without surfactants. Macromolecules 45(4), 1991–2000 (2012)

    Article  CAS  Google Scholar 

  136. Z. Rao, M. Inoue, M. Matsuda, T. Taguchi, Quick self-healing and thermo-reversible liposome gel. Colloids Surf. B: Biointerfaces 82(1), 196–202 (2011)

    Article  PubMed  CAS  Google Scholar 

  137. G. Akay, A. Hassan-Raeisi, D.C. Tuncaboylu, N. Orakdogen, S. Abdurrahmanoglu, W. Oppermann, O. Okay, Self-healing hydrogels formed in catanionic surfactant solutions. Soft Matter 9(7), 2254–2261 (2013)

    Article  CAS  Google Scholar 

  138. D.C. Tuncaboylu, A. Argun, M. Sahin, M. Sari, O. Okay, Structure optimization of self-healing hydrogels formed via hydrophobic interactions. Polymer 53(24), 5513–5522 (2012)

    Article  CAS  Google Scholar 

  139. D.C. Tuncaboylu, M. Sari, W. Oppermann, O. Okay, Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44(12), 4997–5005 (2011)

    Article  CAS  Google Scholar 

  140. T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi, A. Harada, Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 25(20), 2849–2853 (2013)

    Article  PubMed  CAS  Google Scholar 

  141. M. Zhang, D. Xu, X. Yan, J. Chen, S. Dong, B. Zheng, F. Huang, Self-healing supramolecular gels formed by crown ether based host-guest interactions. Angew. Chem. Int. Ed. 51(28), 7011–7015 (2012)

    Article  CAS  Google Scholar 

  142. M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Redox-responsive self-healing materials formed from host-guest polymers. Nat. Commun. 2, 511 (2011)

    Article  PubMed  CAS  Google Scholar 

  143. A. Phadke, C. Zhang, B. Arman, C.C. Hsu, R.A. Mashelkar, A.K. Lele, M.J. Tauber, G. Arya, S. Varghese, Rapid self-healing hydrogels. Proc. Natl. Acad. Sci. 109(12), 4383–4388 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  144. J. Cui, A. del Campo, Multivalent H-bonds for self-healing hydrogels. Chem. Commun. 48(74), 9302–9304 (2012)

    Article  CAS  Google Scholar 

  145. H. Zhang, H. Xia, Y. Zhao, Poly(vinyl alcohol) hydrogel can autonomously self-heal. ACS Macro Lett. 1(11), 1233–1236 (2012)

    Article  CAS  Google Scholar 

  146. A.P. Nowak, V. Breedveld, L. Pakstis, B. Ozbas, D.J. Pine, D. Pochan, T.J. Deming, Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417, 424–428 (2002)

    Article  PubMed  CAS  Google Scholar 

  147. K. Sano, R. Kawamura, T. Tominaga, N. Oda, K. Ijiro, Y. Osada, Self-repairing filamentous actin hydrogel with hierarchical structure. Biomacromolecules 12(12), 4173–4177 (2011)

    Article  PubMed  CAS  Google Scholar 

  148. Q. Wang, J.L. Mynar, M. Yoshida, T. Aida, High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463(7279), 339–343 (2010)

    Article  PubMed  CAS  Google Scholar 

  149. K. Haraguchi, K. Uyama, H. Tanimoto, Self-healing in nanocomposite hydrogels. Macromol. Rapid Commun. 32(16), 1253–1258 (2011)

    Article  PubMed  CAS  Google Scholar 

  150. J. Liu, G. Song, C. He, H. Wang, Self-healing in tough graphene oxide composite hydrogels. Macromol. Rapid Commun. 34(12), 1002–1007 (2013)

    Article  PubMed  CAS  Google Scholar 

  151. X. Yu, X. Cao, L. Chen, H. Lan, B. Liu, T. Yi, Thixotropic and self-healing triggered reversible rheology switching in a peptide-based organogel with a cross-linked nano-ring pattern. Soft Matter 8(12), 3329–3334 (2012)

    Article  CAS  Google Scholar 

  152. P. Mukhopadhyay, N. Fujita, A. Takada, T. Kishida, M. Shirakawa, S. Shinkai, Regulation of a real-time self-healing process in organogel tissues by molecular adhesives. Angew. Chem. Int. Ed. 49(36), 6338–6342 (2010)

    Article  CAS  Google Scholar 

  153. M.C. Roberts, A. Mahalingam, M.C. Hanson, P.F. Kiser, Chemorheology of phenylboronate−salicylhydroxamate cross-linked hydrogel. Macromolecules 41(22), 8832–8840 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. M.C. Roberts, M.C. Hanson, A.P. Massey, E.A. Karren, P.F. Kiser, Dynamically restructuring hydrogel networks formed with reversible covalent crosslinks. Adv. Mater. 19(18), 2503–2507 (2007)

    Article  CAS  Google Scholar 

  155. L. He, D.E. Fullenkamp, J.G. Rivera, P.B. Messersmith, pH responsive self-healing hydrogels formed by boronate-catechol complexation. Chem. Commun. 47(26), 7497–7499 (2011)

    Article  CAS  Google Scholar 

  156. J.I. Jay, K. Langheinrich, M.C. Hanson, A. Mahalingam, P.F. Kiser, Unequal stoichiometry between crosslinking moieties affects the properties of transient networks formed by dynamic covalent crosslinks. Soft Matter 7(12), 5826–5835 (2011)

    Article  CAS  Google Scholar 

  157. J. Canadell, H. Goossens, B. Klumperman, Self-healing materials based on disulfide links. Macromolecules 44(8), 2536–2541 (2011)

    Article  CAS  Google Scholar 

  158. M. Pepels, I. Filot, B. Klumperman, H. Goossens, Self-healing systems based on disulfide–thiol exchange reactions. Polym. Chem. 4(18), 4955–4965 (2013)

    Article  CAS  Google Scholar 

  159. B. Yang, Y. Zhang, X. Zhang, L. Tao, S. Li, Y. Wei, Facilely prepared inexpensive and biocompatible self-healing hydrogel: a new injectable cell therapy carrier. Polym. Chem. 3(12), 3235–3238 (2012)

    Article  CAS  Google Scholar 

  160. M. Dowlut, D.G. Hall, An improved class of sugar-binding boronic acids, soluble and capable of complexing glycosides in neutral water. J. Am. Chem. Soc. 128, 4226–4227 (2006)

    Article  PubMed  CAS  Google Scholar 

  161. Z.M. Wu, X.G. Zhang, C.X. Li, S.M. Zhang, R.N. Dong, D.M. Yu, Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release. Eur. J. Pharm. Sci. 37(3–4), 198–206 (2009)

    Article  PubMed  CAS  Google Scholar 

  162. G. Deng, F. Li, H. Yu, F. Liu, C. Liu, W. Sun, H. Jiang, Y. Chen, Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol–gel transitions. ACS Macro Lett. 1(2), 275–279 (2012)

    Article  CAS  Google Scholar 

  163. F. Liu, F. Li, G. Deng, Y. Cheng, B. Zhang, J. Zhang, C.Y. Liu, Rheological images of dynamic covalent polymer networks and mechanisms behind mechanical and self-healing properties. Macromolecules 45(3), 1636–1645 (2012)

    Article  CAS  Google Scholar 

  164. G. Deng, C. Tang, F. Li, H. Jiang, Y. Chen, Covalent cross-linked polymer gels with reversible sol−gel transition and self-healing properties. Macromolecules 43(3), 1191–1194 (2010)

    Article  CAS  Google Scholar 

  165. Y. Amamoto, J. Kamada, H. Otsuka, A. Takahara, K. Matjaszewski, Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew. Chem. Int. Ed. 50(7), 1660–1663 (2011)

    Article  CAS  Google Scholar 

  166. R. Nicolaÿ, J. Kamada, A. Van Wassen, K. Matjaszewski, Responsive gels based on a dynamic covalent trithiocarbonate cross-linker. Macromolecules 43(9), 4355–4361 (2010)

    Article  CAS  Google Scholar 

  167. K. Imato, M. Nishihara, T. Kanehara, Y. Amamoto, A. Takahara, H. Otsuka, Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature. Angew. Chem. Int. Ed. 51(5), 1138–1142 (2012)

    Article  CAS  Google Scholar 

  168. Y. Amamoto, H. Otsuka, A. Takahara, Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv. Mater. 24(29), 3975–3980 (2012)

    Article  PubMed  CAS  Google Scholar 

  169. P. Reutenauer, E. Buhler, P.J. Boul, S.J. Candau, J.M. Lehn, Room temperature dynamic polymers based on Diels-Alder chemistry. Chemistry 15(8), 1893–1900 (2009)

    Article  PubMed  CAS  Google Scholar 

  170. A.A. Kavitha, N.K. Singha, “Click chemistry” in tailor-made polymethacrylates bearing reactive furfuryl functionality: a new class of self-healing polymeric material. ACS Appl. Mater. Interfaces 1(7), 1427–1436 (2009)

    Article  PubMed  CAS  Google Scholar 

  171. C. Gaina, O. Urasche, V. Gaina, C.D. Varganici, Thermally reversible cross-linked poly(ether-urethane)s. Express Polym Lett 7(7), 636–650 (2013)

    Article  CAS  Google Scholar 

  172. L.R. Kesselman, S. Shinwary, P.R. Selvanganapathy, T. Hoare, Synthesis of monodisperse, covalently cross-linked, degradable “smart” microgels using microfluidics. Small 8(7), 1092–1098 (2012)

    Article  PubMed  CAS  Google Scholar 

  173. A. Sannino, C. Demitri, M. Madaghiele, Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2), 353–373 (2009)

    Article  PubMed Central  CAS  Google Scholar 

  174. A.H. Colby, Y.L. Colson, M.W. Grinstaff, Microscopy and tunable resistive pulse sensing characterization of the swelling of pH-responsive, polymeric expansile nanoparticles. Nanoscale 5(8), 3496–3504 (2013)

    Article  PubMed  CAS  Google Scholar 

  175. V. Filipe, A. Hawe, W. Jiskoot, Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 27(5), 796–810 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. H. Meng, H. Mohamadian, M. Stubblefield, D. Jerro, S. Ibekwe, S.S. Pang, G. Li, Various shape memory effects of stimuli-responsive shape memory polymers. Smart Mater. Struct. 22(9), 093001 (2013)

    Article  Google Scholar 

  177. R.Z. Alavijeh, P. Shokrollahi, J. Barzin, A thermally and water activated shape memory gelatin physical hydrogel, with a gel point above the physiological temperature, for biomedical applications. J. Mater. Chem. B 5(12), 2302–2314 (2017)

    Article  CAS  Google Scholar 

  178. G. Li, H. Zhang, D. Fortin, H. Xia, Y. Zhao, Poly(vinyl alcohol)-poly(ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities. Langmuir 31(42), 11709–11716 (2015)

    Article  PubMed  CAS  Google Scholar 

  179. Y. Han, Y. Bai, Y. Liu, X. Zhai, W. Liu, Zinc ion uniquely induced triple shape memory effect of dipole-dipole reinforced ultra-high strength hydrogels. Macromol. Rapid Commun. 33(3), 225–231 (2012)

    Article  PubMed  CAS  Google Scholar 

  180. J. Hao, R.A. Weiss, Mechanically tough, thermally activated shape memory hydrogels. ACS Macro Lett. 2(1), 86–89 (2013)

    Article  CAS  Google Scholar 

  181. B. Xu, Y. Li, F. Gao, X. Zhai, M. Sun, W. Lu, Z. Cao, W. Liu, High strength multifunctional multiwalled hydrogel tubes: ion-triggered shape memory, antibacterial, and anti-inflammatory efficacies. ACS Appl. Mater. Interfaces 7(30), 16865–16872 (2015)

    Article  PubMed  CAS  Google Scholar 

  182. A. Yasin, H. Li, Z. Lu, S.u. Rehman, M. Siddig, H. Yang, A shape memory hydrogel induced by the interactions between metal ions and phosphate. Soft Matter 10(7), 972–977 (2014)

    Article  PubMed  CAS  Google Scholar 

  183. Z.Q. Dong, Y. Cao, Q.J. Yuan, Y.F. Wang, J.H. Li, B.J. Li, S. Zhang, Redox- and glucose-induced shape-memory polymers. Macromol. Rapid Commun. 34(10), 867–872 (2013)

    Article  PubMed  CAS  Google Scholar 

  184. K. Miyamae, M. Kakahata, Y. Takashima, A. Harada, Self-healing, expansion-contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host-guest interactions. Angew. Chem. Int. Ed. 54(31), 8984–8987 (2015)

    Article  CAS  Google Scholar 

  185. G. Li, Q. Yan, H. Xia, Y. Zhao, Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly(vinyl alcohol) physical hydrogel. ACS Appl. Mater. Interfaces 7(22), 12067–12073 (2015)

    Article  PubMed  CAS  Google Scholar 

  186. Y. Fan, W. Zhou, A. Yasin, H. Li, H. Yang, Dual-responsive shape memory hydrogels with novel thermoplasticity based on a hydrophobically modified polyampholyte. Soft Matter 11(21), 4218–4225 (2015)

    Article  PubMed  CAS  Google Scholar 

  187. W. Feng, W. Zhou, Z. Dai, A. Yasin, H. Yang, Tough polypseudorotaxane supramolecular hydrogels with dual-responsive shape memory properties. J. Mater. Chem. B 4(11), 1924–1931 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd Hoare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Majcher, M.J., Hoare, T. (2018). Advanced Hydrogel Structures. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92066-5_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92066-5_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92066-5

  • Online ISBN: 978-3-319-92066-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics