Skip to main content

Stimuli-Responsive Polymers

  • Living reference work entry
  • First Online:
Functional Biopolymers

Abstract

Stimuli-responsive polymers undergo a change in their physical properties in response to a given physical or biological stimulus. In biomedical applications, a physician could use an external stimulus, such as light, to promote a change in a device. Alternatively, the microenvironment surrounding an implant could provide a natural, internal stimulus, such as a change in pH or the increased concentration of an enzyme, to promote changes in a device. This chapter focuses on the biomedical applications of polymers that respond to the physical stimuli temperature, pH, and light and polymers that respond to the biological stimuli glucose, enzymes, and other proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. D. Schmaljohann, Thermo- and pH- responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58, 1655–1670 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. T. Tanaka, D. Fillmore, S.T. Sun, I. Nishio, G. Swislow, A. Shah, Phase-transitions in ionic gels. Phys. Rev. Lett. 45, 1636–1639 (1980)

    Article  CAS  Google Scholar 

  3. H.G. Schild, Poly (N-isopropylacrylamide) – experiment, theory and application. Prog. Polym. Sci. 17, 163–249 (1992)

    Article  CAS  Google Scholar 

  4. H.E. Canavan, X.H. Cheng, D.J. Graham, B.D. Ratner, D.G. Castner, Cell sheet detachment affects the extracellular matrix: a surface science study comparing thermal liftoff, enzymatic, and mechanical methods. J. Biomed. Mater. Res. A 75A, 1–13 (2005)

    Article  CAS  Google Scholar 

  5. M.A. Cooperstein, P.A.H. Nguyen, H.E. Canavan, Poly(N-isopropyl acrylamide)-coated surfaces: investigation of the mechanism of cell detachment. Biointerphases 12, 02C401 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. T. Hoare, R. Pelton, Impact of microgel morphology on functionalized microgel-drug interactions. Langmuir 24, 1005–1012 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. W. Leobandung, H. Ichikawa, Y. Fukumori, N.A. Peppas, Preparation of stable insulin-loaded nanospheres of poly(ethylene glycol) macromers and N-isopropyl acrylamide. J. Control. Release 80, 357–363 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. S.D. Fitzpatrick, M.A.J. Mazumder, F. Lasowski, L.E. Fitzpatrick, H. Sheardown, PNIPAAm-grafted-collagen as an injectable, in situ gelling, bioactive cell delivery scaffold. Biomacromolecules 11, 2261–2267 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. M. Patenaude, T. Hoare, Injectable, degradable thermoresponsive poly(N-isopropylacrylamide) hydrogels. ACS Macro Lett. 1, 409–413 (2012)

    Article  CAS  Google Scholar 

  10. J.Q. Gan, X.X. Guan, J. Zheng, H.L. Guo, K. Wu, L.Y. Liang, M.G. Lu, Biodegradable, thermoresponsive PNIPAM-based hydrogel scaffolds for the sustained release of levofloxacin. RSC Adv. 6, 32967–32978 (2016)

    Article  CAS  Google Scholar 

  11. S.D. Fitzpatrick, M.A.J. Mazumder, B. Muirhead, H. Sheardown, Development of injectable, resorbable drug-releasing copolymer scaffolds for minimally invasive sustained ophthalmic therapeutics. Acta Biomater. 8, 2517–2528 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. M.C. Koetting, J.T. Peters, S.D. Steichen, N.A. Peppas, Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater. Sci. Eng. R. Rep. 93, 1–49 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  13. J.J. Escobar-Chavez, M. Lopez-Cervantes, A. Naik, Y.N. Kalia, D. Quintanar-Guerrero, A. Ganem-Quintanar, Applications of thermoreversible pluronic F-127 gels in pharmaceutical formulations. J. Pharm. Pharm. Sci. 9, 339–358 (2006)

    PubMed  CAS  Google Scholar 

  14. C. Charrueau, C. Tuleu, V. Astre, J.L. Grossiord, J.C. Chaumeil, Poloxamer 407 as a thermogelling and adhesive polymer for rectal administration of short-chain fatty acids. Drug Dev. Ind. Pharm. 27, 351–357 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. N. Sarkar, Thermal gelation properties of methy and hydroxypropyl methylcellulose. J. Appl. Polym. Sci. 24, 1073–1087 (1979)

    Article  CAS  Google Scholar 

  16. M.D. Baumann, C.E. Kang, J.C. Stanwick, Y.F. Wang, H. Kim, Y. Lapitsky, M.S. Shoichet, An injectable drug delivery platform for sustained combination therapy. J. Control. Release 138, 205–213 (2009)

    Article  CAS  PubMed  Google Scholar 

  17. M.J. Caicco, T. Zahir, A.J. Mothe, B.G. Ballios, A.J. Kihm, C.H. Tator, M.S. Shoichet, Characterization of hyaluronan-methylcellulose hydrogels for cell delivery to the injured spinal cord. J. Biomed. Mater. Res. A 101, 1472–1477 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. M. Kanamala, W.R. Wilson, M.M. Yang, B.D. Palmer, Z.M. Wu, Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials 85, 152–167 (2016)

    Article  CAS  Google Scholar 

  19. A.M. Lowman, N.A. Peppas, Analysis of the complexation/decomplexation phenomena in graft copolymer networks. Macromolecules 30, 4959–4965 (1997)

    Article  CAS  Google Scholar 

  20. J.E. Lopez, N.A. Peppas, Effect of poly (ethylene glycol) molecular weight and microparticle size on oral insulin delivery from P(MAA-g-EG) microparticles. Drug Dev. Ind. Pharm. 30, 497–504 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. K. Nakamura, R.J. Murray, J.I. Joseph, N.A. Peppas, M. Morishita, A.M. Lowman, Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics. J. Control. Release 95, 589–599 (2004)

    Article  CAS  PubMed  Google Scholar 

  22. A. Shalviri, G. Raval, P. Prasad, C. Chan, Q. Liu, H. Heerklotz, A.M. Rauth, X.Y. Wu, pH-dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells. Eur. J. Pharm. Biopharm. 82, 587–597 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. S.Z. Khaled, A. Cevenini, I.K. Yazdi, A. Parodi, M. Evangelopoulos, C. Corbo, S. Scaria, Y. Hu, S.G. Haddix, B. Corradetti, F. Salvatore, E. Tasciotti, One-pot synthesis of pH-responsive hybrid nanogel particles for the intracellular delivery of small interfering RNA. Biomaterials 87, 57–68 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. S.J. Sonawane, R.S. Kalhapure, T. Govender, Hydrazone linkages in pH responsive drug delivery systems. Eur. J. Pharm. Sci. 99, 45–65 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. P. Chytil, T. Etrych, J. Kriz, V. Subr, K. Ulbrich, N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 41, 473–482 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. S. Jevsevar, M. Kunstelj, V.G. Porekar, PEGylation of therapeutic proteins. Biotechnol. J. 5, 113–128 (2010)

    Article  CAS  PubMed  Google Scholar 

  27. R.P. Tang, W.H. Ji, D. Panus, R.N. Palumbo, C. Wang, Block copolymer micelles with acid-labile ortho ester side-chains: synthesis, characterization, and enhanced drug delivery to human glioma cells. J. Control. Release 151, 18–27 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. T. Yoshida, T.C. Lai, G.S. Kwon, K. Sako, pH- and ion-sensitive polymers for drug delivery. Expert Opin. Drug Deliv. 10, 1497–1513 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M. Kaur, A.K. Srivastava, Photopolymerization: a review. J. Macromol. Sci. Polym. Rev. C42, 481–512 (2002)

    Article  CAS  Google Scholar 

  30. S. Deshayes, A.M. Kasko, Polymeric biomaterials with engineered degradation. J. Polym. Sci. A Polym. Chem. 51, 3531–3566 (2013)

    Article  CAS  Google Scholar 

  31. A.M. Kloxin, A.M. Kasko, C.N. Salinas, K.S. Anseth, Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. W. Yuan, G. Jiang, J. Wang, G. Wang, Y. Song, L. Jiang, Temperature/light dual-responsive surface with tunable wettability created by modification with an azobenzene-containing copolymer. Macromolecules 39, 1300–1303 (2006)

    Article  CAS  Google Scholar 

  33. C. Decker, C. Bianchi, Photocrosslinking of a maleimide functionalized polymethacrylate. Polym. Int. 52, 722–732 (2003)

    Article  CAS  Google Scholar 

  34. T. Ishigama, T. Murata, T. Endo, The solution photodimerization of (E)-p-nitrocinnamates. Bull. Chem. Soc. Jpn. 49, 3578–3583 (1976)

    Article  Google Scholar 

  35. F.D. Greene, S.L. Misrock, J.R. Wolfe Jr., The structure of anthracene photodimers. J. Am. Chem. Soc. 77, 3852–3855 (1955)

    Article  CAS  Google Scholar 

  36. L.A. Wells, M.A. Brook, H. Sheardown, Generic, anthracene-based hydrogel crosslinkers for photo-controllable drug delivery. Macromol. Biosci. 11, 988–998 (2011)

    Article  CAS  PubMed  Google Scholar 

  37. L.A. Wells, S. Furukawa, H. Sheardown, Photoresponsive PEG-anthracene grafted hyaluronan as a controlled-delivery biomaterial. Biomacromolecules 12, 923–932 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. L.A. Wells, H. Sheardown, Photosensitive controlled release with polyethylene glycol-anthracene modified alginate. Eur. J. Pharm. Biopharm. 79, 304–313 (2011)

    Article  CAS  PubMed  Google Scholar 

  39. Y. Zheng, M. Micic, S.V. Mello, M. Mabrouki, F.M. Andreopoulos, V. Konka, S.M. Pham, R.M. Leblanc, PEG-based hydrogel synthesis via the photodimerization of anthracene groups. Macromolecules 35, 5228–5234 (2002)

    Article  CAS  Google Scholar 

  40. M. Coursan, J.P. Desvergne, Reversible photodimerization of w-anthrylpolystyrenes. Macromol. Chem. Phys. 197, 1599–1608 (1996)

    Article  CAS  Google Scholar 

  41. J. Manhart, S. Ayalur-Karunakaran, S. Radl, A. Oesterreicher, A. Moser, C. Ganser, C. Teichert, G. Pinter, W. Kern, T. Griesser, S. Schlogl, Design and application of photo-reversible elastomer networks by using the 4 pi s+4 pi s cycloaddition reaction of pendant anthracene groups. Polymer 102, 10–20 (2016)

    Article  CAS  Google Scholar 

  42. S.V. Radl, M. Roth, M. Gassner, A. Wolfberger, A. Lang, B. Hirschmann, G. Trimmel, W. Kern, T. Griesser, Photo-induced crosslinking and thermal de-crosslinking in polynorbornenes bearing pendant anthracene groups. Eur. Poylm. J. 52, 98–104 (2014)

    Article  CAS  Google Scholar 

  43. F.M. Andreopoulos, E.J. Beckman, A.J. Russell, Photoswitchable PEG-CA hydrogels and factors that affect their photosensitivity. J. Polym. Sci. A Polym. Chem. 38, 1466–1476 (2000)

    Article  CAS  Google Scholar 

  44. F.M. Andreopoulos, E.J. Beckman, A.J. Russell, Light-induced tailoring of PEG-hydrogel properties. Biomaterials 19, 1343–1352 (1998)

    Article  CAS  PubMed  Google Scholar 

  45. F.M. Andreopoulos, C.R. Deible, M.T. Stauffer, S.G. Weber, W.R. Wagner, E.J. Backman, A.J. Russell, Photoscissable hydrogel synthesis via rapid photopolymerization of novel PEG-based polymers in the absence of photoinitiator. J. Am. Chem. Soc. 118, 6235–6240 (1996)

    Article  CAS  Google Scholar 

  46. F.M. Andreopoulos, M.J. Roberts, M.D. Bentley, J.M. Harris, E.J. Beckman, A.J. Russell, Photoimmobilization of organophosphorus hydrolase within a PEG-based hydrogel. Biotechnol. Bioeng. 65, 579–588 (1999)

    Article  CAS  PubMed  Google Scholar 

  47. M. Micic, Y. Zheng, V. Moy, X.H. Zhang, M. Andreopolous, R.M. Leblanc, Comparative studies of surface topography and mechanical properties of a new, photo-switchable PEG-based hydrogel. Colloids Surf. B: Biointerfaces 27, 147–158 (2002)

    Article  Google Scholar 

  48. Y. Zheng, F.M. Andreopoulos, M. Micic, Q. Huo, S.M. Pham, R.M. Leblanc, A novel photoscissile poly(ethylene glycol)-based hydrogel. Adv. Funct. Mater. 11, 37–40 (2001)

    Article  CAS  Google Scholar 

  49. F.M. Andreopoulos, I. Persaud, Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds. Biomaterials 27, 2468–2476 (2006)

    Article  CAS  PubMed  Google Scholar 

  50. S. Sirpal, K.M. Gattas-Asfura, R.M. Leblanc, A photodimerization approach to crosslink and functionalize microgels. Colloids Surf. B: Biointerfaces 58, 116–120 (2007)

    Article  CAS  PubMed  Google Scholar 

  51. K.M. Gattas-Asfura, E. Weisman, F.M. Andreopoulos, M. Micic, B. Muller, S. Sirpal, S.M. Pham, R.M. Leblanc, Nitrocinnamate-functionalized gelatin: synthesis and “smart” hydrogel formation via photo-cross-linking. Biomacromolecules 6, 1503–1509 (2005)

    Article  CAS  PubMed  Google Scholar 

  52. S. Deshmukh, L. Bromberg, K.A. Smith, T.A. Hatton, Photoresponsive behavior of amphiphilic copolymers of azobenzene and N,N-dimethylacrylamide in aqueous solutions. Langmuir 25, 3459–3466 (2009)

    Article  CAS  PubMed  Google Scholar 

  53. J.J. Zhang, W.J. Ma, X.P. He, H. Tian, Taking orders from light: photo-switchable working/inactive smart surfaces for protein and cell adhesion. ACS Appl. Mater. Interfaces 9, 8498–8507 (2017)

    Article  CAS  PubMed  Google Scholar 

  54. R. Micheletto, M. Yokokawa, M. Schroeder, D. Hobara, Y. Ding, T. Kakiuchi, Real time observation of trans-cis isomerization on azobenzene SAM induced by optical near field enhancement. Appl. Surf. Sci. 228, 265–270 (2004)

    Article  CAS  Google Scholar 

  55. A.M. Rosales, K.M. Mabry, E.M. Nehls, K.S. Anseth, Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels. Biomacromolecules 16, 798–806 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. R.V. Ulijn, N. Bibi, V. Jayawarna, P.D. Thornton, S.J. Todd, R.J. Mart, A.M. Smith, J.E. Gough, Bioresponsive hydrogels. Mater. Today 10, 40–48 (2007)

    Article  CAS  Google Scholar 

  57. W. Wu, S. Zhou, Responsive materials for self-regulated insulin delivery. Macromol. Biosci. 13, 1464–1477 (2013)

    Article  CAS  PubMed  Google Scholar 

  58. K. Zhang, X.Y. Wu, Modulated insulin permeation across a glucose-sensitive polymeric composite membrane. J. Control. Release 80, 169–178 (2002)

    Article  CAS  PubMed  Google Scholar 

  59. T. Traitel, Y. Cohen, J. Kost, Characterization of glucose-sensitive insulin release systems in simulated in vivo conditions. Biomaterials 21, 1679–1687 (2000)

    Article  CAS  PubMed  Google Scholar 

  60. J. Kost, T.A. Horbett, B.D. Ratner, M. Singh, Glucose-sensitive membranes containing glucose oxidase: activity, swelling, and permeability studies. J. Biomed. Mater. Res. 19, 1117–1133 (1985)

    Article  CAS  PubMed  Google Scholar 

  61. K. Podual, F.J. Doyle, N.A. Peppas, Preparation and dynamic response of cationic copolymer hydrogels containing glucose oxidase. Polymer 41, 3975–3983 (2000)

    Article  CAS  Google Scholar 

  62. S.I. Kang, Y.H. Bae, A sulfonamide based glucose-responsive hydrogel with covalently immobilized glucose oxidase and catalase. J. Control. Release 86, 115–121 (2003)

    Article  CAS  PubMed  Google Scholar 

  63. R. Yin, Z. Tong, D. Yang, J. Nie, Glucose and pH dual-responsive concanavalin A based microhydrogels for insulin delivery. Int. J. Biol. Macromol. 49, 1137–1142 (2011)

    Article  CAS  PubMed  Google Scholar 

  64. R. Yin, K. Wang, S. Du, L. Chen, J. Nie, W. Zhang, Design of genipin-crosslinked microgels from concanavalin A and glucosyloxyethyl acrylated chitosan for glucose-responsive insulin delivery. Carbohydr. Polym. 103, 369–376 (2014)

    Article  CAS  PubMed  Google Scholar 

  65. A.A. Obaidat, K. Park, Characterization of protein release through glucose-sensitive hydrogel membranes. Biomaterials 18, 801–806 (1997)

    Article  CAS  PubMed  Google Scholar 

  66. A. Matsumoto, S. Ikeda, A. Harada, K. Kataoka, Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions. Biomacromolecules 4, 1410–1416 (2003)

    Article  CAS  PubMed  Google Scholar 

  67. V. Lapeyre, I. Gosse, S. Chevreux, V. Ravaine, Monodispersed glucose-responsive microgels operating at physiological salinity. Biomacromolecules 7, 3356–3363 (2006)

    Article  CAS  PubMed  Google Scholar 

  68. Y. Zhang, Y. Guan, S. Zhou, Synthesis and volume phase transitions of glucose-sensitive microgels. Biomacromolecules 7, 3196–3201 (2006)

    Article  CAS  PubMed  Google Scholar 

  69. K. Kataoka, H. Miyazaki, M. Bunya, T. Okano, Y. Sakurai, Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on-off regulation of insulin release. J. Am. Chem. Soc. 120, 12694–12695 (1998)

    Article  CAS  Google Scholar 

  70. L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762–798 (2007)

    Article  CAS  Google Scholar 

  71. A. Banerjee, K. Chatterjee, G. Madras, Enzymatic degradation of polymers: a brief review. J. Mater. Sci. Technol. 30, 567–573 (2014)

    Article  CAS  Google Scholar 

  72. E. Ozsagiroglu, B. Iyisan, Y.A. Guvenilir, Biodegradation and characterization studies of different kinds of polyurethanes with several enzyme solutions. Pol. J. Environ. Stud. 21, 1777–1782 (2012)

    CAS  Google Scholar 

  73. S. Cai, Y. Liu, X. Zheng Shu, G.D. Prestwich, Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 26, 6054–6067 (2005)

    Article  CAS  PubMed  Google Scholar 

  74. A.M. Gajria, V. Davé, R.A. Gross, S.P. McCarthy, Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate). Polymer 37, 437–444 (1996)

    Article  CAS  Google Scholar 

  75. D. Bacinello, E. Garanger, D. Taton, K.C. Tam, S. Lecommandoux, Enzyme-degradable self-assembled nanostructures from polymer-peptide hybrids. Biomacromolecules 15, 1882–1888 (2014)

    Article  CAS  PubMed  Google Scholar 

  76. S. Kim, E.H. Chung, M. Gilbert, K.E. Healy, Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co- acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration. J. Biomed. Mater. Res. A 75, 73–88 (2005)

    Article  CAS  PubMed  Google Scholar 

  77. S. Kim, K.E. Healy, Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Biomacromolecules 4, 1214–1223 (2003)

    Article  CAS  PubMed  Google Scholar 

  78. V.K. Garripelli, J.K. Kim, S. Son, W.J. Kim, M.A. Repka, S. Jo, Matrix metalloproteinase-sensitive thermogelling polymer for bioresponsive local drug delivery. Acta Biomater. 7, 1984–1992 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. B.F. Sloane, K. Moin, E. Krepela, J. Rozhin, Cathepsin B and its endogenous inhibitors: the role in tumor malignancy. Cancer Metastasis Rev. 9, 333–352 (1990)

    Article  CAS  PubMed  Google Scholar 

  80. C.S. Gondi, J.S. Rao, Cathepsin B as a cancer target. Expert Opin. Ther. Targets 17, 281–291 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. D.S.H. Chu, R.N. Johnson, S.H. Pun, Cathepsin B-sensitive polymers for compartment-specific degradation and nucleic acid release. J. Control. Release 157, 445–454 (2012)

    Article  CAS  PubMed  Google Scholar 

  82. N. Hamaguchi, A. Ellington, M. Stanton, Aptamer beacons for the direct detection of proteins. Anal. Biochem. 294, 126–131 (2001)

    Article  CAS  PubMed  Google Scholar 

  83. G. Mayer, M.S.L. Ahmed, A. Dolf, E. Endl, P.A. Knolle, M. Famulok, Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat. Protoc. 5, 1993–2004 (2010)

    Article  CAS  PubMed  Google Scholar 

  84. W. Tan, H. Wang, Y. Chen, X. Zhang, H. Zhu, C. Yang, R. Yang, C. Liu, Molecular aptamers for drug delivery. Trends Biotechnol. 29, 634–640 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. E. Mastronardi, A. Foster, X. Zhang, M.C. DeRosa, Smart materials based on DNA aptamers: taking aptasensing to the next level. Sensors 14, 3156–3171 (2014)

    Article  CAS  PubMed  Google Scholar 

  86. J. Zhou, M.R. Battig, Y. Wang, Aptamer-based molecular recognition for biosensor development. Anal. Bioanal. Chem. 398, 2471–2480 (2010)

    Article  CAS  PubMed  Google Scholar 

  87. K. Sefah, J.A. Phillips, X. Xiong, L. Meng, D. Van Simaeys, H. Chen, J. Martin, W. Tan, Nucleic acid aptamers for biosensors and bio-analytical applications. Analyst 134, 1765–1775 (2009)

    Article  CAS  PubMed  Google Scholar 

  88. Z. Zhu, C. Wu, H. Liu, Y. Zou, X. Zhang, H. Kang, C.J. Yang, W. Tan, An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angew. Chem. Int. Ed. Eng. 49, 1052–1056 (2010)

    Article  CAS  Google Scholar 

  89. H. Yang, H. Liu, H. Kang, W. Tan, Engineering target-responsive hydrogels based on aptamer – target interactions. J. Am. Chem. Soc. 130, 6320–6321 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. M.R. Battig, B. Soontornworajit, Y. Wang, Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization. J. Am. Chem. Soc. 134, 12410–12413 (2012)

    Article  CAS  PubMed  Google Scholar 

  91. F. El-Hamed, N. Dave, J. Liu, Stimuli-responsive releasing of gold nanoparticles and liposomes from aptamer-functionalized hydrogels. Nanotechnology 22, 494011 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura A. Wells .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Baldwin, E.T., Wells, L.A. (2018). Stimuli-Responsive Polymers. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92066-5_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92066-5_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92066-5

  • Online ISBN: 978-3-319-92066-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics