Skip to main content

Absorbing Boundaries and Layers

  • Reference work entry
  • First Online:
Encyclopedia of Applied and Computational Mathematics
  • 317 Accesses

Synonyms

Artificial; Computational; Free-Space; Nonreflective; Open or Far-Field Boundary Conditions; Sponge Layers

Summary

Absorbing boundaries and layers are used to limit the computational domain in the numerical approximation of partial differential equations in infinite domains, such as wave propagation problems or computational fluid dynamics.

In a typical seismic problem, the wave equation \(\mathcal{L}_{u} = f\) must be solved in the subsurface with data g on the surface; the solution u is sought in the domain D S in magenta in Fig. 1. The domain in blue is a computational layer L C ; their union is the computational domain D C .

Absorbing Boundaries and Layers, Fig. 1
figure 11 figure 11

Absorbing layer (courtesy of L. Métivier [19])

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 999.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abarbanel, S., Gottlieb, D.: A mathematical analysis of the PML method. J. Comput. Phys. 134, 357–363 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Appelö, D., Hagström, T., Kreiss, G.: Perfectly matched layers for hyperbolic systems: general formulation, well-posedness and stability. SIAM J. Appl. Math. 67, 1–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayliss, A., Turkel, E.: Radiation boundary conditions for wave-like equations. Commun. Pure Appl. Math. 32, 313–357 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bécache, E., Fauqueux, S., Joly, P.: Stability of perfectly matched layers, group velocities and anisotropic waves. J. Comput. Phys. 188, 399–433 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bérenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bérenger, J.P.: Three-dimensional perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 127, 363–379 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629–651 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Engquist, B., Majda, A.: Radiation boundary conditions for acoustic and elastic wave calculations. Commun. Pure Appl. Math. 32, 313–357 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Engquist, B., Zhao, H.K.: Absorbing boundary conditions for domain decomposition. Appl. Numer. Math. 27, 341–365 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gander, M.J., Halpern, L.: Absorbing boundary conditions for the wave equation and parallel computing. Math. Comput. 74(249), 153–176 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hagstrom, T.: Radiation boundary conditions for the numerical simulation of waves. Acta Numer. 8, 47–106 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Halpern, L.: Absorbing boundary conditions and optimized Schwarz waveform relaxation. BIT 46, 21–34 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Halpern, L., Rauch, J.: Artificial boundary conditions for general parabolic equations. Numer. Math. 71, 185–224 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Halpern, L., Petit-Bergez, S., Rauch, J.: The analysis of matched layers. Conflu. Math. 3, 159–236 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Higdon, R.: Absorbing boundary conditions for difference approximations to the multidimensional wave equation. Math. Comput. 47, 437–459 (1986)

    MathSciNet  MATH  Google Scholar 

  16. Hu, F.: On absorbing boundary conditions of linearized Euler equations by a perfectly matched layer. J. Comput. Phys. 129, 201–219 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Israeli, M., Orszag, S.: Approximation of radiation boundary conditions. J. Comput. Phys. 41, 115–135 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lindmann, E.L.: Free-space boundary conditions for the time dependent wave equation. J. Comput. Phys. 18, 16–78 (1975)

    Article  Google Scholar 

  19. Métivier, L.: Une méthode d’inversion non linéaire pour l’imagerie sismique haute résolution. Ph.D. thesis, Université Paris 13 (2009)

    Google Scholar 

  20. Métral, J., Vacus, O.: Caractère bien posé du problème de Cauchy pour le système de Bérenger. C. R. Math. Acad. Sci. Paris 328, 847–852 (1999)

    Article  MATH  Google Scholar 

  21. Rappaport, C.M.: Interpreting and improving the PML absorbing boundary condition using anisotropic lossy mapping of space. IEEE Trans. Magn. 32, 968–974

    Google Scholar 

  22. Schädle, A., Zschiedrich, L.: Additive Schwarz method for scattering problems using the PML method at interfaces. In: Domain Decomposition Methods in Science and Engineering XVI. Lecture Notes in Computational Science and Engineering, vol. 55, pp. 205–212. Springer (2011)

    Google Scholar 

  23. Smith, W.D.: A nonreflecting plane boundary for wave propagation problems. J. Comput. Phys. 15, 492–503 (1974)

    Article  MATH  Google Scholar 

  24. Szeftel, J.: Absorbing boundary conditions for non linear partial differential equations. Comput. Methods Appl. Mech. Eng. 195, 3760–3775 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Trefethen, L.N., Halpern, L.: Well-posedness of one-way wave equations and absorbing boundary conditions. Math. Comput. 47(167), 421–435 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Halpern, L. (2015). Absorbing Boundaries and Layers. In: Engquist, B. (eds) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70529-1_366

Download citation

Publish with us

Policies and ethics