Skip to main content

The Family Lactobacillaceae: Genera Other than Lactobacillus

  • Reference work entry
  • First Online:
The Prokaryotes
  • 5460 Accesses

Abstract

Members of the genus Pediococcus are Gram-positive, catalase negative, oxidase negative, lactic acid producing bacteria that prefer facultatively aerobic to microaerophilic growth conditions. Glucose and gluconate are fermented to lactic acid, but without the production of CO2, which classifies the genus as homofermentative. Cells are spherical and arranged in a tetrad formation. The genus Tetragenococcus has similar cell morphology. Pediococcus is genotypically closer related to the Lactobacillus casei/Lactobacillus paracasei group within the genus Lactobacillus than to Tetragenococcus. Pediococci are normally found in the same habitats as Lactobacillus, Leuconostoc and Weissella spp. Most Pediococcus spp. have been isolated from plants and fermented plant material. Some strains have been isolated from the gastrointestinal tract (GIT) of humans and animals. Pediococcus acidilactici has been isolated from the GIT of carp (Cyprinus carpio) and freshwater prawns (Macrobrachium rosenbergii). Pediococcus pentosaceus has been isolated from tonsils and the nasal cavity of piglets. Only a few rare strains are resistant to vancomycin and they are generally not regarded as pathogens. The genus Paralactobacillus was differentiated from homofermentative Lactobacillus spp. by its phylogenetic position based on 16S rRNA gene sequences and sugar fermentation profiles. However, the differentiations were denied later and Paralactobacillus selangorensis, sole species in the genus Paralactobacillus, was reclassified as a species in the genus Lactobacillus. The only species in the genus Sharpea is Sharpea azabuensis. The species is phylogenetically related to Lactobacillus catenaformis, but is differentiated based on 16S rRNA gene sequences. This chapter describes the history of the genera Paralactobacillus, Pediococcus and Sharpea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammor MS, Florez AB, Mayo B (2007) Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol 24:559–570

    PubMed  CAS  Google Scholar 

  • Axelsson L (1998) Lactic acid bacteria: classification and physiology. In: Salminen S, von Wright A (eds) Lactic acid bacteria. Microbiology and functional aspects. Marcel Dekker, New York, pp 1–72

    Google Scholar 

  • Back W (1978a) Zur Taxonomie der Gattung Pediococcus. Phänotypische und genotypische Abgrenzung der bisher bekannten Arten sowie Beschreibung einer neuen bierschädlichen Art: Pediococcus inopinatus. Brauwissenschaft 31:237–250, 312–320, 336–343

    Google Scholar 

  • Back W (1978b) Elevation of Pediococcus cerevisiae subsp. dextrinicus Coster and White to species status Pediococcus dextrinicus (Coster and White) comb. nov. Int J Syst Bacteriol 28:523–527

    Google Scholar 

  • Back W (1988) Validation list number 25. Int J Syst Bacteriol 38:220–222

    Google Scholar 

  • Back W (1994) Farbatlas und Handbuch der Getränkebiologie Teil l. Verlag Hans Carl, Nürnberg

    Google Scholar 

  • Back W (2000) Farbatlas und Handbuch der Getränkebiologie TeiI 2. Verlag Hans Carl, Nürnberg

    Google Scholar 

  • Back W, Stackebrandt E (1978) DNS/DNS-homologiestudien innerhalb der Gattung Pediococcus. Arch Microbiol 118:79–85

    CAS  Google Scholar 

  • Baele M, Chiers K, Devriese LA, Smith HE, Wisselink HJ, Vaneechoutte M, Haesebrouck F (2001) The Gram-positive tonsillar and nasal flora of piglets before and after weaning. J Appl Microbiol 91:997–1003

    PubMed  CAS  Google Scholar 

  • Balcke J (1884) Über häufig vorkommende Fehler in der Bierbereitung. Wochenschrift für Brauerei 1:181–184

    Google Scholar 

  • Barney M, Volgyi A, Navarro A, Ryder D (2001) Riboprinting and 16S rRNA sequencing for identification of brewery Pediococcus isolates. Appl Environ Microbiol 67:553–560

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barros RR, Carvalho MDS, Peralta JM, Facklam RR, Teixeira LM (2001) Phenotypic and genotypic characterization of Pediococcus strains isolated from human clinical sources. J Clin Microbiol 39:1241–1246

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barton LL, Rider ED, Coen RW (2001) Bacteremic infection with Pediococcus: vancomycin-resistant opportunist. Pediatrics 107:775–776

    PubMed  CAS  Google Scholar 

  • Bauer R, Chikindas ML, Dicks LMT (2005) Purification, partial amino acid sequence and mode of action of pediocin PD-1, a bacteriocin produced by Pediococcus damnosus NCFB 1832. Int J Food Microbiol 101:17–27

    PubMed  CAS  Google Scholar 

  • Belgacem B, Dousset X, Prevost H, Mania M (2009) Polyphasic taxonomic studies of lactic acid bacteria associated with Tunisian fermented meat based on the heterogeneity of the 16S-23S rRNA intergenic spacer region. Arch Microbiol 191:711–720

    PubMed  Google Scholar 

  • Beneduce L, Spano G, Vernile A, Tarantino D, Massa S (2004) Molecular characterization of lactic acid populations associated with wine spoilage. J Basic Microbiol 44:10–16

    PubMed  CAS  Google Scholar 

  • Björkroth J, Holzapfel WH (2003) Genera Leuconostoc, Oenococcus and Weissella. In: Dworkin M (ed) The prokaryotes, 3rd edn. Springer, New York (electronic version)

    Google Scholar 

  • Bouton Y, Guyot P, Grappin R (1998) Preliminary characterization of microflora of Comté cheese. J Appl Microbiol 85:123–131

    PubMed  CAS  Google Scholar 

  • Cai Y, Kumai S, Ogawa M, Benno Y, Nakase T (1999b) Characterization and identification of Pediococcus species isolated from forage crops and their application for silage preparation. Appl Environ Microbiol 65:2901–2906

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cai Y, Suyanandana P, Benno Y (1999a) Classification and characterization of lactic acid bacteria isolated from the intestines of common carp and freshwater prawns. J Gen Appl Microbiol 45:177–184

    PubMed  CAS  Google Scholar 

  • Caldwell SL, Hutkins RW, McMahon DJ, Oberg CJ, Broadbent JR (1998) Lactose and galactose uptake by genetically engineered Pediococcus species. Appl Microbiol Biotechnol 49:315–320

    CAS  Google Scholar 

  • Caldwell SL, McMahon DJ, Oberg CJ, Broadbent JR (1999) Induction and characterization of Pediococcus acidilactici temperate bacteriophage. Syst Appl Microbiol 22:514–519

    PubMed  Google Scholar 

  • Callon C, Millet C, Montel MC (2004) Diversity of lactic acid bacteria isolated from AOC Salers cheese. J Dairy Res 71:231–244

    PubMed  CAS  Google Scholar 

  • Claussen NH (1903) Etudes sur les bacteries dites sarcines et sur les maladies quelles provoquent dans le biere. C R Trav Lab Carlsberg 6:64–83

    Google Scholar 

  • Collins MD, Williams AM, Wallbanks S (1990) The phylogeny of Aerococcus and Pediococcus as determined by 16S rRNA sequence analysis: description of Tetragenococcus gen. nov. FEMS Microbiol Lett 70:255–262

    CAS  Google Scholar 

  • Collins MD, Rodrigues U, Ash C, Aguirre M, Farrow JAE, Martinez-Murcia A, Phillips BA, Williams AM, Wallbanks S (1991) Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol Lett 77:5–12

    CAS  Google Scholar 

  • Coppola R, Nanni M, Iorizzo M, Sorrentino A, Sorrentino E, Grazia L (1997) Survey of lactic acid bacteria isolated during the advanced stages of the ripening of Parmigiano Reggiano cheese. J Dairy Res 64:305–310

    CAS  Google Scholar 

  • Coster E, White HR (1964) Further studies of the genus Pediococcus. J Gen Microbiol 26:185–197

    Google Scholar 

  • Coulon J, Houlès A, Dimopoulou M, Maupeu J, Dols-Lafargue M (2012) Lysozyme resistance of the ropy strain Pediococcus parvulus IOEB 8801 is correlated with beta-glucan accumulation around the cell. Int J Food Microbiol 159:25–29

    PubMed  CAS  Google Scholar 

  • Davis CR, Wibowo D, Fleet GH, Lee TH (1988) Properties of wine lactic acid bacteria: their potential enological significance. Am J Enol Vitic 39:137–142

    CAS  Google Scholar 

  • De Bruyne K, Franz CMAP, Vancanneyt M, Schillinger U, Mozzi F, de Valdez GF, De Vuyst L, Vandamme P (2008) Pediococcus argentinicus sp. nov. from Argentinean fermented wheat flour and identification of Pediococcus species by pheS, rpoA and atpA sequence analysis. Int J Syst Evol Microbiol 58:2909–2916

    PubMed  Google Scholar 

  • Deibel RH, Wilson GD, Niven CF Jr (1961) Microbiology of meat curing. IV. A lyophilized Pediococcus cerevisiae starter culture for fermented sausage. Appl Microbiol 9:239–243

    PubMed  CAS  PubMed Central  Google Scholar 

  • Delaherche A, Claisse O, Lonvaud-Funel A (2004) Detection and quantification of Brettanomyces bruxellensis and ‘ropy’ Pediococcus damnosus strains in wine by real-time polymerase chain reaction. J Appl Microbiol 97:910–915

    PubMed  CAS  Google Scholar 

  • Dellaglio F, Trovatelli LG, Sarra PG (1981) DNA-DNA homology among representative strains of the genus Pediococcus. Zbl Bakt Mikrobiol Hyg 1 Abt Orig C 2:140–150

    Google Scholar 

  • Dobrogosz WJ, Stone RW (1962) Oxygen metabolism in Pediococcus pentosaceus. I. Role of oxygen and catalase. J Bacteriol 84:716–723

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dobson CM, Deneer H, Lee S, Hemmingsen S, Glaze S, Ziola B (2002) Phylogenetic analysis of the genus Pediococcus, including Pediococcus claussenii sp. nov., a novel lactic acid bacterium isolated from beer. Int J Syst Evol Microbiol 52:2003–2010

    PubMed  CAS  Google Scholar 

  • Doi K, Nishizaki Y, Fujino Y, Ohshima T, Ohmomo S, Ogata S (2009) Pediococcus lolii sp. nov., isolated from ryegrass silage. Int J Syst Evol Microbiol 59:1007–1010

    PubMed  CAS  Google Scholar 

  • Donhauser S (1993) Mikrobiologie des Bieres. In: Dittrich HH (ed) Mikrobiologie der Lebensmittel. Getränke. Behr’s Verlag, Hamburg, pp 109–182

    Google Scholar 

  • Ennahar S, Cai Y, Fujita Y (2003) Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis. Appl Environ Microbiol 69:444–451

    PubMed  CAS  PubMed Central  Google Scholar 

  • Euzéby JP (1998) Necessary corrections according to the judicial opinions 16, 48 and 52. Int J Syst Evol Microbiol 48:613

    Google Scholar 

  • Facklam RR, Elliot JA (1995) Identification, classification, and clinical relevance of catalase-negative, Gram-positive cocci, excluding the streptococci and enterococci. Clin Microbiol Rev 8:479–495

    PubMed  CAS  PubMed Central  Google Scholar 

  • Felis GE, Dellaglio F (2007) Taxonomy of lactobacilli and bifidobacteria. Curr Issues Intest Microbiol 8:44–61

    PubMed  CAS  Google Scholar 

  • Felis GE, Torriani S, Dellaglio F (2005) Reclassification of Pediococcus urinaeequi (ex Mees 1934) Garvie 1988 as Aerococcus urinaeequi comb. nov. Int J Syst Evol Microbiol 55:1325–1327

    Google Scholar 

  • Franz CMAP, Vancanneyt M, Vandemeulebroecke K, De Wachter M, Cleenwerck I, Hoste B, Schillinger U, Holzapfel WH, Swings J (2006) Pediococcus stilesii sp. nov., isolated from maize grains. Int J Syst Evol Microbiol 56:329–333

    PubMed  CAS  Google Scholar 

  • Fujii T, Nakashima K, Hayashi N (2005) Random amplified polymorphic DNA-PCR based cloning of markers to identify the beer-spoilage strains of Lactobacillus brevis, Pediococcus damnosus, Lactobacillus collinoides and Lactobacillus coryniformis. J Appl Microbiol 98:1209–1220

    PubMed  CAS  Google Scholar 

  • García-Cano I, Velasco-Pérez L, Rodríguez-Sanoja R, Sánchez S, Mendoza-Hernández G, Llorente-Bousquets A, Farrés A (2011) Detection, cellular localization and antibacterial activity of two lytic enzymes of Pediococcus acidilactici ATCC 8042. J Appl Microbiol 111:607–615

    PubMed  Google Scholar 

  • Garvie EI (1974) Nomenclatural problems of the pediococci. Int J Syst Microbiol 24:301–306

    Google Scholar 

  • Garvie EI (1988) Validation list number 25. Int J Syst Bacteriol 38:220–222

    Google Scholar 

  • Gassem MA (1999) Study of the micro-organisms associated with the fermented bread (khamir) produced from sorghum in Gizan region Saudi Arabia. J Appl Microbiol 86:221–225

    PubMed  CAS  Google Scholar 

  • Gevers D, Huys G, Devlieghere F, Uyttendaele M, Debevere J, Swings J (2000) Isolation and identification of tetracycline resistant lactic acid bacteria from pre-packed sliced meat products. Syst Appl Microbiol 23:279–284

    PubMed  CAS  Google Scholar 

  • Golledge CL, Stingemore N, Aravena M, Joske D (1990) Septicemia caused by vancomycin-resistant Pediococcus acidilactici. J Clin Microbiol 28:1678–1679

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gonzalez C, Kunka BS (1983) Plasmid transfer in Pediococcus spp.: Intergeneric and intrageneric transfer of pIP501. Appl Environ Microbiol 46:81–89

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gonzalez C, Kunka BS (1986) Evidence for plasmid linkage of raffinose utilization and associated galactose and sucrose hydrolase activity in Pediococcus pentosaceus. Appl Environ Microbiol 51:105–109

    PubMed  CAS  PubMed Central  Google Scholar 

  • Green M, Barbadora K, Michaels M (1991) Recovery of vancomycin-resistant Gram-positive cocci from pediatric liver transplant recipients. J Clin Microbiol 29:2503–2506

    PubMed  CAS  PubMed Central  Google Scholar 

  • Günther HL, White HR (1961) The cultural and physiological characters of the pediococci. J Gen Microbiol 26:185–197

    PubMed  Google Scholar 

  • Haakensen M, Dobson CM, Hill JE, Ziola B (2009) Reclassification of Pediococcus dextrinicus (Coster and White 1964) Back 1978 (Approved list 1980) as Lactobacillus dextrinicus comb. nov., and emended description of the genus Lactobacillus. Int J Syst Evol Microbiol 59:615–621

    PubMed  CAS  Google Scholar 

  • Haakensen M, Pittet V, Ziola B (2011) Reclassification of Paralactobacillus selangorensis Leisner et al. 2000 as Lactobacillus selangorensis comb. nov. Int J Syst Evol Microbiol 61:2979–2983

    PubMed  Google Scholar 

  • Hammes WP, Hertel C (2006) The genera Lactobacillus and Carnobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 4, 3rd edn. Springer, New York, pp 320–403

    Google Scholar 

  • Heilig HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, de Vos WM (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S rDNA. Appl Environ Microbiol 68:114–123

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hernandez-Jover T, Izquierdo-Pulido M, Veciana-Nogues MT, Marine-Font A, Vidal-Carou MC (1997) Effect of starter cultures on biogenic amine formation during fermented sausage production. J Food Prot 60:825–830

    CAS  Google Scholar 

  • Holzapfel W (1998) The Gram-positive bacteria associated with meat and meat products. In: Davies A, Board R (eds) The microbiology of meat and poultry. Blackie Academic and Professional, London, pp 35–74

    Google Scholar 

  • Holzapfel WH, Franz CMAP, Ludwig W, Back W, Dicks LMT (2006) Genera Pediococcus and Tetragenococcus. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, 3rd edn, An evolving electronic resource for the microbiological community. Springer, New York. http://www.prokaryotes.com

    Google Scholar 

  • Holzapfel WH, Franz CMAP, Ludwig W, Dicks LMT (2009) Family I, Genus III. Pediococcus Claussen 1903, 68AL. In: De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainy FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol 3 (The Firmicutes). Springer, New York, pp 513–532

    Google Scholar 

  • Hoover DG, Walsh PM, Kolactis KM, Daly MM (1988) A bacteriocin produced by Pediococcus species associated with a 5 · 5 MDa plasmid. J Food Prot 51:29–31

    CAS  Google Scholar 

  • Izquierdo-Pulido M, Carceller-Rosa JM, Marine-Font A, Vidal-Carou MC (1997) Tyramine formation by Pediococcus spp. during beer fermentation. J Food Prot 60:831–836

    CAS  Google Scholar 

  • Jager K, Harlander S (1992) Characterization of a bacteriocin from Pediococcus acidilactici PC and comparison of bacteriocin-producing strains using molecular typing procedures. Appl Microbiol Biotechnol 37:631–637

    CAS  Google Scholar 

  • Juven BJ, Meinersmann RJ, Stern NJ (1991) Antagonistic effects of lactobacilli and pediococci to control intestinal colonization by human enteropathogens in live poultry. J Appl Bacteriol 70:95–103

    PubMed  CAS  Google Scholar 

  • Kalač P, Šavel J, Křížek M, Pelikánová T, Prokopová M (2002) Biogenic amine formation in bottled beer. Food Chem 79:431–434

    Google Scholar 

  • Kostinek M, Ban-Koffi L, Ottah-Atikpo M, Teniola D, Schillinger U, Holzapfel WH, Franz CMAP (2008) Diversity of predominant lactic acid bacteria associated with cocoa fermentation in Nigeria. Curr Microbiol 56:306–314

    PubMed  CAS  Google Scholar 

  • Kurzak P, Ehrmann MA, Vogel RF (1998) Diversity of lactic acid bacteria associated with ducks. Syst Appl Microbiol 21:588–592

    PubMed  CAS  Google Scholar 

  • Lan Y, Sun S, Tamminga S, Williams BA, Verstegen MW, Erdi G (2004) Real-time PCR detection of lactic acid bacteria in cecal contents of Eimeria tenella-lnfected broilers fed soybean oligosaccharides and soluble soybean polysaccharides. Poult Sci 83:1696–1702

    PubMed  CAS  Google Scholar 

  • Lee AC, Fujio Y (1999) Microflora of banh men, a fermentation starter from Vietnam. World J Microbiol Biotechnol 15:57–62

    Google Scholar 

  • Lee M, Kim MK, Vancanneyt M, Swings J, Kim S-H, Kang MS, Lee S-T (2005) Tetragenococcus koreensis sp. nov., a novel rhamnolipid-producing bacterium. Int J Syst Evol Microbiol 55:1409–1413

    PubMed  CAS  Google Scholar 

  • Lei V, Jakobsen M (2004) Microbiological characterization and probiotic potential of koko and koko sour water, African spontaneously fermented millet porridge and drink. J Appl Microbiol 96:384–397

    PubMed  CAS  Google Scholar 

  • Leisner JJ, Vancanneyt M, Goris J, Christensen H, Rusul G (2000) Description of Paralactobacillus selangorensis gen. nov., sp. nov., a new lactic acid bacterium isolated from chili bo, a Malaysian food ingredient. Int J Syst Evol Microbiol 50:19–24

    PubMed  CAS  Google Scholar 

  • Lin CL, Bolsen KK, Fung DYC (1992) Epiphytic lactic acid bacteria succession during the pre-ensiling periods of alfalfa and maize. J Appl Bacteriol 73:375–387

    Google Scholar 

  • Lindner P (1887) Über ein neues in Malzmaischen vorkommendes, milchsäurebildendes Ferment. Wschr Brauerei 4:437–440

    Google Scholar 

  • Lindner P (1888) Die Sarcina-Organismen der Gährungsgewerbe. Inaug. Diss. der Friedrich Wilhelms Universität 1–59. Zentralbl Bakteriol Parasitenk Infektionskr Hyg (II) 4: 427–429

    Google Scholar 

  • Liu L, Zhang B, Tong H, Dong X (2006) Pediococcus ethanolidurans sp. nov., isolated from the walls of a distilled-spirit-fermenting cellar. Int J Syst Evol Microbiol 56:2405–2408

    PubMed  CAS  Google Scholar 

  • Lonvaud-Funel A, Joyeux A (1998) A bacterial disease causing ropiness of wine. Sciences des Aliments 8:33–49

    Google Scholar 

  • Lonvaud-Funel A, Guilloux Y, Joyeux A (1993) Isolation of a DNA probe for identification of glucan-producing Pediococcus damnosus in wines. J Appl Bacteriol 74:41–47

    CAS  Google Scholar 

  • Luchansky JB, Glass KA, Harsono KD, Degnan AJ, Faith NG, Cauvin B, Baccus-Taylor G, Arihara K, Bater B, Maurer AJ, Cassens RB (1992) Genomic analysis of Pediococcus starter cultures used to control Listeria monocytogenes in turkey summer sausage. Appl Environ Microbiol 58:3053–3059

    PubMed  CAS  PubMed Central  Google Scholar 

  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchin N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee J-H, Diaz-Muniz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616

    Google Scholar 

  • Manca de Nandra MC, Strasser de Saad AM (1995) Polysaccharide production by Pediococcus pentosaceus from wine. Int J Food Microbiol 27:101–106

    Google Scholar 

  • Martel A, Meulenaere V, Devriese LA, Decostere A, Haesebrouck F (2003) Macrolide and lincosamide resistance in the Gram-positive nasal and tonsillar flora of pigs. Microb Drug Resist 9:293–297

    PubMed  CAS  Google Scholar 

  • Mastro TD, Spika JS, Lozano P, Appel J, Facklam RR (1990) Vancomycin-resistant Pediococcus acidilactici: nine cases of bacteremia. J Infect Dis 161:956–960

    PubMed  CAS  Google Scholar 

  • Mees RH (1934) Onderzoekingen over de Biersarcina. Thesis. Technical University, Delft, pp 1–110

    Google Scholar 

  • Mehlen A, Goeldner M, Ried S, Stindl S, Ludwig W, Schleifer K-H (2004) Development of a fast DNA–DNA hybridization method based on melting profiles in microplates. Syst Appl Microbiol 27:689–695

    PubMed  CAS  Google Scholar 

  • Molina I, Toldra F (1992) Detection of proteolytic activity in microorganisms isolated from dry-cured ham. J Food Sci 57:1308–1310

    CAS  Google Scholar 

  • Molina I, Silla H, Flores J (1989) Studie über die Keimflora trocken gepökelter Schinken. 3. Milchsäurebakterien. Fleischwirtschaft 69:1754–1756

    Google Scholar 

  • Mora D, Fortina MG, Parini C, Manachini PL (1997) Identification of Pediococcus acidilactici and Pediococcus pentosaceus based on 16S rRNA and ldhD gene-targeted multiplex PCR analysis. FEMS Microbiol Lett 151:231–236

    PubMed  CAS  Google Scholar 

  • Mora D, Parini C, Fortina MG, Manachini PL (1998) Discrimination among pediocin AcH/PA-1 producer strains by comparison of pedB and pedD amplified genes and multiplex PCR assay. Syst Appl Microbiol 21:454–460

    PubMed  CAS  Google Scholar 

  • Mora D, Parini C, Fortina MG, Manachini PL (2000) Development of molecular RAPD marker for the identification of Pediococcus acidilactici strains. Syst Appl Microbiol 23:400–408

    PubMed  CAS  Google Scholar 

  • Morita H, Shiratori C, Murakami M, Takami H, Toh H, Kato Y, Nakajima F, Takagi M, Akita H, Masaoka T, Hattori M (2008) Sharpea azabuensis gen. nov., sp. nov., a Gram-positive, strictly anaerobic bacterium isolated from the faeces of thoroughbred horses. Int J Syst Evolut Microbiol 58:2682–2686

    CAS  Google Scholar 

  • Mugula JK, Nnko SA, Narvhus JA, Sorhaug T (2003a) Microbiological and fermentation characteristics of togwa, a Tanzanian fermented food. Int J Food Microbiol 80:187–199

    PubMed  CAS  Google Scholar 

  • Mugula JK, Sorhaug T, Stepaniak L (2003b) Proteolytic activities in togwa, a Tanzanian fermented food. Int J Food Microbiol 84:1–12

    PubMed  CAS  Google Scholar 

  • Mundt JO, Beattie WG, Wieland FR (1969) Pediococci residing on plants. J Bacteriol 98:938–942

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakagawa A, Kitahara K (1959) Taxonomic studies on the genus Pediococcus. J Gen Appl Microbiol 5:95–126

    Google Scholar 

  • Nes IF, Diep DB, Håvarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek 70:113–128

    PubMed  CAS  Google Scholar 

  • Nieto P, Molina I, Flores J, Silla MH, Bermell S (1989) Lipolytic activity of microorganisms isolated from dry-cured ham. In: Proceedings of 35th International Congress of Meat Science and Technology, vol II. Copenhagen, pp 323–329

    Google Scholar 

  • Nigatu A, Ahrne S, Gashe BA, Molin G (1998) Randomly amplified polymorphic DNA (RAPD) for discrimination of Pediococcus pentosaceus and Ped. acidilactici and rapid grouping of Pediococcus isolates. Lett Appl Microbiol 26:412–416

    CAS  Google Scholar 

  • Ogier J-C, Son O, Gruss A, Tailliez P, Delacroix-Buchet A (2002) Identification of the bacterial microflora in dairy products by temporal temperature gradient gel electrophoresis. Appl Environ Microbiol 68:3691–3701

    PubMed  CAS  PubMed Central  Google Scholar 

  • Olson NF (1990) The impact of lactic acid bacteria on cheese flavor. FEMS Microbiol Rev 87:131–147

    CAS  Google Scholar 

  • Omar NB, Ampe F, Raimbault M, Guyot J-P, Tailliez P (2000) Molecular diversity of lactic acid bacteria from cassava sour starch (Colombia). Syst Appl Microbiol 23:285–291

    PubMed  CAS  Google Scholar 

  • Paludan-Muller C, Madsen M, Sophanodora P, Gram L, Moller PL (2002) Fermentation and microflora of plaa-som, a thai fermented fish product prepared with different salt concentrations. Int J Food Microbiol 73:61–70

    PubMed  CAS  Google Scholar 

  • Parente E, Grieco S, Crudele MA (2001) Phenotypic diversity of lactic acid bacteria isolated from fermented sausages produced in Basilicata (Southern Italy). J Appl Microbiol 90:943–952

    PubMed  CAS  Google Scholar 

  • Pedersen CS (1949) The genus Pediococcus. Bacteriol Rev 13:225–232

    Google Scholar 

  • Perez Pulido R, Ben Omar N, Abriouel H, Lucas Lopez R, Canamero M, Galvez A (2005) Microbiological study of lactic acid fermentation of Caper berries by molecular and culture-dependent methods. Appl Environ Microbiol 71:7872–7879

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pittet V, Abegunde T, Marfleet T, Haakensen M, Morrow K, Jayaprakash T, Schroeder K, Trost B, Byrns S, Bergsveinson J, Kusalik A, Ziola B (2012) Complete genome sequence of the beer spoilage organism Pediococcus claussenii ATCC BAA-344T. J Bacteriol 194(5):1271–1272

    PubMed  CAS  PubMed Central  Google Scholar 

  • Raccach M (1987) Pediococci and biotechnology. Crit Rev Microbiol 14:291–309

    PubMed  CAS  Google Scholar 

  • Rice SL, Koehler PE (1976) Tyrosine and histidine decarboxylase activities of Pediococcus cerevisiae and Lactobacillus species and the production of tyramine in fermented sausages. J Milk Food Technol 39:166–169

    CAS  Google Scholar 

  • Riebel WJ, Washington JA (1990) Clinical and microbiologic characteristics of pediococci. J Clin Microbiol 28:1348–1355

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rodas AM, Ferrer S, Pardo I (2003) 16S-ARDRA, a tool for identification of lactic acid bacteria isolated from grape must and wine. Syst Appl Microbiol 26:412–422

    PubMed  CAS  Google Scholar 

  • Rodriguez JM, Cintas LM, Casaus P, Suarez MI, Hernandez PE (1997) Detection of pediocin PA-1-producing pediococci by rapid molecular biology techniques. Food Microbiol 14:363–371

    CAS  Google Scholar 

  • Rogosa J, Mitchell JA, Wiseman RF (1951) A selective medium for isolation and enumeration of oral and fecal lactobacilli. J Bacteriol 62:132–133

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rojo-Bezares B, Saenz Y, Poeta P, Zarazaga M, Ruiz-Larrea F, Torres C (2006) Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Int J Food Microbiol 111:234–240

    PubMed  CAS  Google Scholar 

  • Ruoff KL, Kuritzkes DR, Wolfson JS, Ferraro MJ (1988) Vancomycin-resistant Gram-positive bacteria isolated from human sources. J Clin Microbiol 26:2064–2068

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sakamoto K, Konings WN (2003) Beer spoilage bacteria and hop resistance. Int J Food Microbiol 89:105–124

    PubMed  CAS  Google Scholar 

  • Santos EM, Jaime I, Rovira J, Lyhs U, Korkeala H, Björkroth J (2005) Characterization and identification of lactic acid bacteria in “morcilla de Burgos”. Int J Food Microbiol 97:285–296

    PubMed  CAS  Google Scholar 

  • Sarma P, Mohanty S (1998) Pediococcus acidilactici pneumonitis and bacteremia in a pregnant woman. J Clin Microbiol 36:2392–2392

    PubMed  CAS  PubMed Central  Google Scholar 

  • Satokari R, Mattila-Sandholm T, Suihko M-L (2000) Identification of pediococci by ribotyping. J Appl Bact 88:260–265

    CAS  Google Scholar 

  • Schillinger U, Holzapfel WH (2003) Culture media for lactic acid bacteria. In: Corry JEL, Curtis GDW, Baird RM (eds) Handbook of culture media for food microbiology, vol 37. Boston, Amsterdam, pp 127–140, Chapter 8

    Google Scholar 

  • Schleifer KH, Ludwig W (1995) Phylogeny of the genus Lactobacillus and related genera. Syst Appl Microbiol 18:461–467

    Google Scholar 

  • Schultes LM, Evans JB (1971) Deoxyribonucleic acid homology of Aerococcus viridans. Int J Syst Bacteriol 21:207–209

    Google Scholar 

  • Simpson WJ, Taguchi H (1995) The genus Pediococcus, with notes on the genera Tetragenococcus and Aerococcus. In: Wood JB, Holzapfel WH (eds) B. The genera of lactic acid bacteria, Academic & Professional, pp 125–172

    Google Scholar 

  • Simpson PJ, Stanton C, Fitzgerald GF, Ross RP (2002) Genomic diversity within the genus Pediococcus as revealed by randomly amplified polymorphic DNA PCR and pulsed-field gel electrophoresis. Appl Environ Microbiol 68:765–771

    PubMed  CAS  PubMed Central  Google Scholar 

  • Simpson PJ, Fitzgerald GF, Stanton C, Ross RP (2006) Enumeration and identification of pediococci in powder-based products using selective media and rapid PFGE. J Microbiol Methods 64:120–125

    PubMed  CAS  Google Scholar 

  • Sims W (1986) The isolation of pediococci from human saliva. Arch Oral Biol 11:967–972

    Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1980) Approved list of bacterial names. Int J Syst Bacteriol 30:225–420

    Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (eds) (1989) Approved list of bacterial names, emended edition. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Smitinont T, Tansakul C, Tanasupawat S, Keeratipibul S, Nacarini L, Bosco M, Cescutti P (1999) Exopolysaccharide-producing lactic acid bacteria strains from traditional Thai fermented foods: isolation, identification and exopolysaccharide characterization. Int J Food Microbiol 51:105–111

    PubMed  CAS  Google Scholar 

  • Stamer JR (1983) Lactic acid fermentation of cabbage and cucumbers. In: Reed G (ed) Biotechnology, vol 5. Verlag Chemie, Weinheim, pp 365–378

    Google Scholar 

  • Stevenson DM, Muck RE, Shinners KJ, Weimer PJ (2005) Use of real-time PCR to determine population profiles of individual species of lactic acid bacteria in alfalfa silage and stored corn stover. Appl Microbiol Biotechnol 71:329–338

    PubMed  Google Scholar 

  • Swenson JM, Facklam RR, Thornsberry C (1990) Antimicrobial susceptibility of vancomycin-resistant Leuconostoc, Pediococcus, and Lactobacillus species. Antimicrob Agents Chemother 34:543–549

    Google Scholar 

  • Taguchi H, Ohkochi M, Uehara H, Kojima K, Mawatari M (1990) KOT medium, a new medium for the detection of beer spoilage lactic acid bacteria. J Am Soc Brew Chem 48:72–75

    CAS  Google Scholar 

  • Tamang JP (1998) Role of microorganisms in traditional fermented foods. Indian Food Ind 17:162–167

    Google Scholar 

  • Tamang JP, Tamang B, Schillinger U, Franz CM, Gores M, Holzapfel WH (2005) Identification of predominant lactic acid bacteria isolated from traditionally fermented vegetable products of the Eastern Himalayas. Int J Food Microbiol 105:347–356

    PubMed  CAS  Google Scholar 

  • Tanasupawat S, Daengsubha W (1983) Pediococcus species and related bacteria found in fermented foods and related materials in Thailand. J Gen Appl Microbiol 29:487–506

    CAS  Google Scholar 

  • Tanasupawat S, Pakdeeto A, Thawai C, Yukphan P, Okada S (2007) Identification of lactic acid bacteria from fermented tea leaves (miang) in Thailand and proposals of Lactobacillus thailandensis sp. nov., Lactobacillus camelliae sp. nov., and Pediococcus siamensis sp. nov. J Gen Appl Microbiol 53:7–15

    PubMed  CAS  Google Scholar 

  • Tankovic J, Leclercq R, Duval J (1993) Antimicrobial susceptibility of Pediococcus spp. and genetic basis of macrolide resistance in Pediococcus acidilactici HM3020. Antimicrob Agents Chemother 37:789–792

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tenorio C, Zarazaga M, Martinez C, Torres C (2001) Bifunctional enzyme 6’-.-aminoglycoside acetyltransferase-2”-.-aminoglycoside phosphotransferase in Lactobacillus and Pediococcus isolates of animal origin. J Clin Microbiol 39:824–825

    PubMed  CAS  PubMed Central  Google Scholar 

  • Torriani S, Vescovo M, Dellaglio F (1987) Tracing Pediococcus acidilactici in ensiled maize by plasmid-encoded erythromycin resistance. J Appl Bacteriol 63:543–553

    Google Scholar 

  • Von Witzingerode HM, Moter A, Halle E, Lohnbrunner H, Kaisers U, Neuhaus P, Halle E (2000) A case of septicemia with Pediococcus acidilactici after long term antibiotic treatment. Eur J Clin Microbiol Infect Dis 19:946–948

    Google Scholar 

  • Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:2578–2585

    PubMed  CAS  PubMed Central  Google Scholar 

  • Waters SM, Doyle S, Murphy RA, Power RF (2005) Development of solution phase hybridization PCR-ELISA for the detection and quantification of Enterococcus faecalis and Pediococcus pentosaceus in Nurmi-type cultures. J Microbiol Methods 63:264–275

    PubMed  CAS  Google Scholar 

  • Weiller HG, Radler F (1970) Milchsäurebakterien aus Wein und von Rebenblättern. Zbl Bakt II Abt 124:707–732

    CAS  Google Scholar 

  • Weiller HG, Radler F (1976) Über den Aminosäurestofwechsel von Milchsäurebakterien aus Wein. Zschr Lebensm Unters Forsch 161:259–266

    CAS  Google Scholar 

  • Weiss N (1992) The genera Pediococcus and Aerococcus. In: Balows A, Trϋper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, vol 2, 2nd edn. Springer, New York

    Google Scholar 

  • Whittenbury R (1965) A study of some pediococci and their relationship to Aerococcus viridans and the enterococci. J Gen Microbiol 40:97–106

    Google Scholar 

  • Wiik R, Torsvik V, Egidius E (1986) Phenotypic and genotypic comparisons among strains of the lobster pathogen Aerococcus viridans and other marine Aerococcus viridans-like cocci. Int J Syst Bacteriol 36:431–434

    Google Scholar 

  • Wilderdyke MR, Smith DA, Brashears MM (2004) Isolation, identification and selection of lactic acid bacteria from alfalfa sprouts for competitive inhibition of foodborne pathogens. J Food Prot 67:947–951

    PubMed  CAS  Google Scholar 

  • Yousif NMK, Huch M, Schuster T, Cho G, Dirar HA, Holzapfel WH, Franz CMAP (2010) Diversity of lactic acid bacteria from Hussuwa, a traditional African fermented sorghum food. Food Microbiol 27:757–768

    PubMed  CAS  Google Scholar 

  • Zhang JG, Cai Y, Kobayashi R, Mukai S (2000) Characteristics of lactic acid bacteria isolated from forage crops and their effects on silage fermentation. J Sci Food Agric 80:1455–1460

    CAS  Google Scholar 

  • Zhang B, Tong H, Dong X (2005) Pediococcus cellicola sp. nov., a novel lactic acid coccus from a distilled-spirit fermenting cellar. Int J Syst Evol Microbiol 55:2167–2170

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon Dicks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Dicks, L., Endo, A. (2014). The Family Lactobacillaceae: Genera Other than Lactobacillus . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30120-9_207

Download citation

Publish with us

Policies and ethics