Skip to main content

Biodeterioration

  • Reference work entry
The Prokaryotes

Abstract

Bacteria were the first life forms to appear on Earth, and they have a long history of association with mineral surfaces. Surfaces of clay minerals played an important role in the initial evolutionary processes of bacteria and the diversification of their physiology (Kluyver and van Niel 1956; Mayr 1998; Wächtershäuser 1988; Woese 1987, 1990, 1998; Woese and Olsen 1986). Bacteria also adapt themselves to a mode of living on physical surfaces and at interfaces (Angles et al. 1993; Bitton 1980; Brune et al. 2000; Caldwell et al. 1997; Fenchel and Finlay 1995; Fletcher 1980; Glagolev 1984; Hugenholtz et al. 1998; Margulis 1981; Marshall 1992; Moat and Foster 1988; Pace 1997; Wolfaardt et al. 1994; Zavarzin et al. 1994; Zinder 1993). In addition, they are capable of degrading a wide range of pollutants (Gibson 1984; Gu and Berry 1991, 1992; Gu et al. 1992a; Young and Cerniglia 1995). It is well recognized that degradation of organic chemicals and nutrient cycling are more rapid on surfaces. Unfortunately, microbial association with surfaces also has a potential negative economic impact, when it accelerates degradation and deterioration of a wide range of materials, including inorganic minerals (Gu et al. 2000b; Mitchell and Gu 2000), concrete, and stone (Gebers and Hirsch 1978; Gu et al. 2000b; Moosavi et al. 1986; Padival et al. 1995; Piervittori et al. 1994; Prieto et al. 1995); metals (Ford and Mitchell 1990b; Gu et al. 2000a; Miller 1970); and natural and synthetic polymers (Gu et al. 2000d; Guezennec et al. 1998; Swift et al. 1979). In all cases, the essential ingredient is the close association between the microflora and the material surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hafez SII, El-Said AHM (1997) Effect of garlic, onion and sodium benzoate on the mycoflora of pepper, cinnamon and rosemary in Egypt. Int Biodeter Biodegr 39:67–97

    Article  Google Scholar 

  • Adamo AM, Giovannotti M, Magaudda G, Plossi Zappalà M, Rocchetti F, Rossi G (1998) Effect of gamma rays on pure cellulose paper. Restaurator 19:41–59

    Article  Google Scholar 

  • Albertsson A-C (1980) The shape of the biodegradation curve for low and high density polyethylenes in prolonged series of experiments. Eur Polym J 16:623–630

    Article  CAS  Google Scholar 

  • Albertsson A-C, Andersson SO, Karlsson S (1987) The mechanism of biodegradation of polyethylene. Polym Degr Stab 18:73–87

    Article  CAS  Google Scholar 

  • Albertsson A-C, Barenstedt C, Karlsson S (1994) Abiotic degradation products from enhanced environmentally degradable polyethylene. Acta Polym 45:97–103

    Article  CAS  Google Scholar 

  • Alexander M (1977) Ecological interrelationships. In: Alexander M (ed) Introduction to soil microbiology, 2nd edn. Wiley, New York, pp 405–456

    Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Anderson AJ, Dowes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    PubMed  CAS  Google Scholar 

  • Andrady AL, Pegram JE, Nakatsuka S (1993) Studies on enhanced degradable plastics. 1: the geographic variability in outdoor lifetimes of enhanced photodegrable polyethelenes. J Environ Polym Degr 1:31–43

    Article  CAS  Google Scholar 

  • Angell P, Luo JS, White DC (1995) Studies of the reproducible pitting of 304 stainless steel by a consortium containing sulphate-reducing bacteria. In: Agell P, Borenstein SW, Buchanan RA, Dexter SC, Dowling NJE, Little BJ, Lundin CD, McNeil MB, Pope DH, Tatnall RE, White DC, Ziegenfuss HG (eds) International conference on microbial induced corrosion NACE international. Houston TX 1/1–10

    Google Scholar 

  • Angles ML, Marshall KC, Goodman AE (1993) Plasmid transfer between marine bacteria in the aqueous phase and biofilms in reactor microcosms. Appl Environ Microbiol 59:843–850

    PubMed  CAS  Google Scholar 

  • Appanna VD, Piperre MS (1996) Aluminum elicits exocellular phosphatidylethanolamine production in Pseudomonas fluorescens. Appl Environ Microbiol 62:2778–2782

    PubMed  CAS  Google Scholar 

  • Arai H (2000) Foxing caused by fungi: twenty-five years of study. Int Biodeter Biodegr 46:181–188

    Article  CAS  Google Scholar 

  • Arino X, Hernandez-Marine M, Saiz-Jimenez C (1997) Colonization of Roman tombs by calcifying cyanobacteria. Phycologia 36:366–373

    Article  Google Scholar 

  • Ascaso C, Wierzchos J, Castello R (1998) Study of the biogenic weathering of calcareous litharenite stones caused by lichen and endolithic microorganisms. Int Biodeter Biodegr 42:29–38

    Article  CAS  Google Scholar 

  • ASTM (American Society for Testing, and Materials) (1993a) Standard practice for determining resistance of synthetic polymeric materials to fungi 1993 Annual Book of ASTM Standards. ASTM, Philadelphia PA 08.03, G21-90 527–529

    Google Scholar 

  • ASTM (American Society for Testing, and Materials) (1993b) Standard practice for determining resistance of plastics to bacteria 1993 Annual Book of ASTM Standards. ASTM, Philadelphia, PA, 08.03, G22-76 531–533

    Google Scholar 

  • ASTM (American Society for Testing, and Materials) (1993c) Standard test method for determining the aerobic biodegradability of degradable plastics by specific microorganisms 1993 Annual Book of ASTM Standards. ASTM, Philadelphia, PA 08.03, D5247-92 401–404

    Google Scholar 

  • ASTM (American Society for Testing, and Materials) (1993d) Standard test method for assessing the aerobic biodegradation of plastic materials in an activated-sludge-wastewater-treatment system 1993 Annual Book of ASTM Standards ASTM, Philadelphia, PA 08.03, D5247-92 411–416

    Google Scholar 

  • ASTM (American Society for Testing, and Materials) (1993e) Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions 1993 Annual Book of ASTM Standards. ASTM, Philadelphia, PA 08.03, D5338-92 444–449

    Google Scholar 

  • Atlas RM, Bartha R (1997) Physiological ecology of microorganisms: adaptations to environmental conditions. In: Atlas RM, Bartha R (eds) Microbial ecology: fundamentals and applications, 4th edn. Benjamin/Cummings, Menlo Park, pp 281–331

    Google Scholar 

  • Audouard JP, Compère C, Dowling NJE, Feron D, Festy D, Mollica A, Rogne T, Scotto V, Steinsmo U, Taxen K, Thierry D (1995) Effect of marine biofilms on high performance stainless steel exposed in European coastal waters. In: Microbial corrosion: proceedings of the 3rd international european federation of corrosion (EFC) Workshop European Federation of Corrosion EFC Publication no. 15, pp 198–210

    Google Scholar 

  • Bacci M (1995) Fibre optics applications to works of art. Sensors Actuat B29:190–196

    Article  CAS  Google Scholar 

  • Balow A, Trüper HG, Dworkin M, Harder W, Schleifer KH (1992) The prokaryotes I, II, III, and IV. Springer, New York, http://www.prokaryotes.com

  • Barlaz MA, Ham RK, Schaefer DM (1989a) Mass-balance analysis of anaerobically decomposed refuse. J Environ Eng 115:1088–1102

    Article  CAS  Google Scholar 

  • Barlaz MA, Schaefer DM, Ham RK (1989b) Bacterial population development and chemical characterization of refuse decomposition in a simulated sanitary landfill. Appl Environ Microbiol 55:55–65

    PubMed  CAS  Google Scholar 

  • Bazylinski DA, Garrett-Reed AJ, Abedi A, Frankel RB (1993) Copper association with iron sulfide magnetosomes in a magnetotactic bacterium. Arch Microbiol 160:35–42

    CAS  Google Scholar 

  • Becker TW, Feumbein WE, Warscheid T, Resende MA (1994) Investigation into microbiology. In: Herkenrath GM (ed) Investigations into devices against environmental attack on stone. GKSS-Forschungszentrum/GmbH, Geesthacht, pp 147–190

    Google Scholar 

  • Bell E, Dowding P, Cooper TP (1992) The effect of a biocide treatment and a silicone treatment on the weathering of limestone. Environ Technol 13:687–693

    Article  CAS  Google Scholar 

  • Bell GM, Chadwick J (1994) Regulatory controls on biocides in the United Kingdom and restrictions on the use of triorganotin-containing antifouling products. Int Biodeter Biodegr 34:375–386

    Article  CAS  Google Scholar 

  • Berekaa MM, Lino A, Reichelt R, Keller U, Steinbüchel A (2000) Effect of pretreatment of rubber material on its biodegradability by various rubber degrading bacteria. FEMS Microbiol Lett 184:199–206

    Article  PubMed  CAS  Google Scholar 

  • Bérenger J-F, Frixon C, Bigliardi J, Creuzet N (1985) Production, purification and properties of thermostable xylanase from Clostridium stercorarium. Can J Microbiol 31:635–643

    Article  Google Scholar 

  • Beveridge TJ, Makin SA, Kadurugamuwa JL, Li Z (1997) Interactions between biofilms and the environment. FEMS Microbiol Rev 20:291–303

    Article  PubMed  CAS  Google Scholar 

  • Bianchi A, Favali MA, Barbieri N, Bassi M (1980) The use of fungicides on mold-covered frescoes in S. Eusebio in Pavia. Int Biodeter Bull 16:45–51

    CAS  Google Scholar 

  • Biczok I (1968) Betonkorrosion. Betoschutz, Wiesbaden/Berlin, pp 28–30

    Google Scholar 

  • Bingaman WW, Willingham GL (1994) The changing regulatory environment: EPA registration of a new marine antifoulant active ingredient. Int Biodeter Biodegr 34:387–399

    Article  CAS  Google Scholar 

  • Bitton G (1980) Adsorption of viruses to surfaces: technological and ecological implications. In: Bitton G, Marshall KC (eds) Adsorption of microorganisms to surfaces. Wiley, New York, pp 331–374

    Google Scholar 

  • Bitton G (1994) Processes based on attached microbial growth. In: Bitton G (ed) Wastewater microbiology. Wiley, New York, pp 189–198

    Google Scholar 

  • Blake RC II, Norton WN, Howard GT (1998) Adherence and growth of a Bacillus species on an insoluble polyester polyurethane. Int Biodeter Biodegr 42:63–73

    Article  CAS  Google Scholar 

  • Blakemore RP (1982) Magnetotactic bacteria. Ann Rev Microbiol 36:217–238

    Article  CAS  Google Scholar 

  • Blanchette RA (1995) Biodeterioration of archaeological wood. Biodeter Abstr 9:113–127

    Google Scholar 

  • Bloomfield SF, Megid R (1994) Interaction of iodine with Bacillus subtilis spores and spore forms. J Appl Bacteriol 76:492–499

    Article  PubMed  CAS  Google Scholar 

  • Bock E, Koops HP, Harms H (1986) Cell biology of nitrifying bacteria. In: Prosser JI (ed) Nitrification. IRL Press, Oxford, UK, pp 17–38

    Google Scholar 

  • Bock E, Ahlers B, Myer C (1989) Biogene Korrosion von Beton-und Natursteinen durch salpetersäure bildende. Bakterien Bauphysik 11:141–144

    Google Scholar 

  • Bock E, Sand W (1990) Microbially influenced corrosion of concrete and natural sandstone. In: Dowling NJ, Mittelman MW, Danko JC (eds) Microbially influenced corrosion and biodeterioration. National Association of Corrosion Engineers, Houston, pp 3/29–3/33

    Google Scholar 

  • Bogan RT, Brewer RT (1985) Cellulose esters, organic. In: Kroschwitz JI (ed) Encyclopedia of polymer science and engineering, 2nd edn. Wiley, New York, pp 158–181

    Google Scholar 

  • Bonet R, Simon-Pujol MD, Congregado F (1993) Effects of nutrients on exopolysaccharide production and surface properties of Aeromonas salmonicida. Appl Environ Microbiol 59:2437–2441

    PubMed  CAS  Google Scholar 

  • Booth GH, Tiller AK (1960) Polarization studies of mild steel in cultures of sulphate-reducing bacteria. Trans Faraday Soc 56:1689–1696

    Article  CAS  Google Scholar 

  • Booth GH, Tiller AK (1962) Polarization studies of mild steel in cultures of sulphate-reducing bacteria. Part 2: thermophilic organisms. Trans Faraday Soc 58:110–115

    Article  Google Scholar 

  • Booth GH, Tiller AK, Wormwell F (1962) Ancient iron nails well preserved from apparently corrosive soils. Nature (Lond) 195:376–377

    Article  CAS  Google Scholar 

  • Booth GH, Elford L, Wakerly DJ (1968) Corrosion of mild steel by sulfate-reducing bacteria: an alternative mechanism. Br Corrosion J 3:242–245

    Article  CAS  Google Scholar 

  • Borenstein S (1994) Microbiologically influenced corrosion handbook. Woodhead, Cambridge, MA, p 56

    Book  Google Scholar 

  • Bos R, van der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesion interactions – its mechanisms and methods for study. FEMS Microbiol Rev 23:179–230

    PubMed  CAS  Google Scholar 

  • Bouwer EJ (1992) Bioremediation of organic contaminants in the subsurface. In: Mitchell R (ed) Environmental microbiology. Wiley, New York, pp 319–333

    Google Scholar 

  • Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential application as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982

    PubMed  CAS  Google Scholar 

  • Breslin VT (1993) Degradation of starch-plastic composites in a municipal solid waste landfill. J Environ Polym Degr 1:127–141

    Article  CAS  Google Scholar 

  • Breslin VT, Swanson RL (1993) Deterioration of starch-plastic composite in the environment. J Air Waste Manag Assoc 43:325–335

    CAS  Google Scholar 

  • Breslin CB, Chen C, Mansfeld F (1997) The electrochemical behaviour of stainless steels following surface modification in cerium-containing solutions. Corrosion Sci 39:1061–1073

    Article  CAS  Google Scholar 

  • Breznak JA (1984) Activity on surfaces. In: Marshall KC (ed) Microbial adhesion and aggregation. Dahlem Konferenzen/Springer, Berlin, pp 203–221

    Google Scholar 

  • Broomfield JP (2000) Corrosion of steel in concrete. In: Revie RW (ed) Uhlig’s corrosion handbook, 2nd edn. Wiley, New York, pp 581–600

    Google Scholar 

  • Brown GA (1982) Implications of electronic and ionic conductivities of polyimide films in integrated circuit fabrication. In: Feit ED, Wilkins CW (eds) Polymer materials for electronic applications. American Chemical Society, Washington DC, ACS Symposium Ser, vol 184, pp 151–169

    Google Scholar 

  • Brözel VS, Cloete TE (1993) Bacterial resistance to conventional water treatment biocides. Biodeter Abstr 7:387–395

    Google Scholar 

  • Brune A, Frenzel P, Cypionka H (2000) Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710

    PubMed  CAS  Google Scholar 

  • Bryers JD (1990) Biofilms in biotechnology. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 733–773

    Google Scholar 

  • Bryers JD, Characklis WG (1990) Biofilms in water and wastewater treatment. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 671–696

    Google Scholar 

  • Bryers JD (1994) Biofilms and the technological implications of microbial cell adhesion. Colloid Surf B Biointerf 2:9–23

    Article  CAS  Google Scholar 

  • Buchanan CM, Gardner RM, Komarek RJ (1993) Aerobic biodegradation of cellulose acetate. J Appl Polym Sci 47:1709–1719

    Article  CAS  Google Scholar 

  • Budwill K, Fedorak PM, Page WJ (1992) Methanogenic degradation of poly(3-hydroxyalkanoates). Appl Environ Microbiol 58:1398–1401

    PubMed  CAS  Google Scholar 

  • Busscher HJ, Sjollema J, van der Mei HC (1990) Relative importance of surface free energy as a measure of hydrophobicity in bacterial adhesion to solid surfaces. In: Doyle RJ, Rosenberg M (eds) Microbial cell surface hydrophobicity. American Society for Microbiology, Washington DC, pp 335–339

    Google Scholar 

  • Byrom D (1991) Miscellaneous biomaterials. In: Byrom D (ed) Biomaterials: novel materials from biological sources. Macmillan, New York, pp 335–359

    Google Scholar 

  • Cacciari I, Quatrini P, Zirletta G, Mincione E, Vinciguerra V, Lupattelli P, Sermanni GG (1993) Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced. Appl Environ Microbiol 59:3695–3700

    PubMed  CAS  Google Scholar 

  • Caldwell DE, Lawrence JR (1986) Growth kinetics of Pseudomonas fluorescens microcolonies within the hydrodynamic boundary layers of surface microenvironments. Microb Ecol 12:299–312

    Article  Google Scholar 

  • Caldwell DE, Wolfaaedt GM, Korber DR, Lawrence JR (1997) Do bacterial communities transcend Darwinism? Adv Microb Ecol 15:105–191

    Google Scholar 

  • Callow ME, Fletcher RL (1994) The influence of low surface energy materials on bioadhesion – a review. Int Biodeter Biodegr 34:333–348

    Article  CAS  Google Scholar 

  • Campaignolle X, Crolet J-L (1997) Method for studying stabilization of localized corrosion on carbon steel by sulfate-reducing bacteria. Corrosion 53:440–447

    Article  CAS  Google Scholar 

  • Cargill KL, Pyle BH, McFeters GA (1992) Effects of culture conditions and biofilm formation on the iodine susceptibility of Legionella pneumophila. Can J Microbiol 38:423–429

    Article  PubMed  CAS  Google Scholar 

  • Cariola MG, Forni C, Albertano P (1987) Characterization of the algal flora growing on ancient Roman frescoes. Phycologia 26:387–397

    Article  Google Scholar 

  • Chahal PS, Chahal DS, André G (1992) Cellulase production profile of Trichoderma reesei on different cellulosic substrates at various pH levels. J Ferment Bioeng 74:126–128

    Article  CAS  Google Scholar 

  • Characklis WG (1990) Microbial fouling. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 523–584

    Google Scholar 

  • Chen G, Clayton CR, Sadowski RA, Gillow JB, Francis AJ (1995) Influence of sulfate-reducing bacteria on the passive film formed on austenitic stainless steel, AISI 304 NACE International, Houston TX Corrosion

    Google Scholar 

  • Chen G (1996) An XPS study of the passivity of stainless steels influenced by sulfate-reducing bacteria (PhD dissertation). State University of New York at Stony Brook, New York, p 279

    Google Scholar 

  • Chen X, Stewart PS (1996) Chlorine penetration into artificial biofilm is limited by a reaction-diffusion interaction. Environ Sci Technol 30:2078–2083

    Article  CAS  Google Scholar 

  • Chen G, Kagwade SV, French GE, Ford TE, Mitchell R, Clayton CR (1996) Metal ion and expolymer interaction: a surface analytical study. Corrosion 52:891–899

    Article  CAS  Google Scholar 

  • Choi MH, Yoon SC (1994) Polyester biosynthesis characteristics of Pseudomonas citronellolis grown on various carbon sources, including 3-methyl-branched substrates. Appl Environ Microbiol 60:3245–3254

    PubMed  CAS  Google Scholar 

  • Clapp WP (1948) Macro-organisms in sea water and their effect on corrosion. In: Uhlig HH (ed) The corrosion handbook. Wiley, New York, pp 433–441

    Google Scholar 

  • Clark TR, Ehrlich HL (1992) Copper removal from an industrial waste by bioleaching. J Ind Microbiol 9:213–218

    Article  CAS  Google Scholar 

  • Clayton CR, Halada GP, Kearns JR, Gillow JB, Francis AJ (1994) Spectroscopic study of sulfate reducing bacteria-metal ion interactions related to microbiologically influenced corrosion (MIC). In: Kearns JR, Little BJ (eds) Microbiologically influenced corrosion testing. American Society for Testing and, Philadelphia, PA, ASTM STP, vol 1232, pp 141–152

    Google Scholar 

  • Corbett RA, Morrison WS, Bickford DF (1987) Corrosion evaluation of alloys for nuclear waste processing. Mat Perf 2:40–45

    Google Scholar 

  • Corvo F, Haces C, Betancourt N, Maldonado L, Véleca L, Echeverria M, de Rincón OT, Rincón A (1997) Atmospheric corrosivity in the Caribbean area. Corrosion Sci 39:823–833

    Article  CAS  Google Scholar 

  • Costerton JW, Geesey GG, Cheng K-J (1978) How bacteria stick. Scient Am 238:86–95

    Article  CAS  Google Scholar 

  • Costerton JW, Geesey GG, Jones PA (1988) Bacterial biofilms in relation to internal corrosion monitoring and biocide strategies. Mat Perf 4:49–53

    Google Scholar 

  • Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G (1994) Biofilms, the customized microniche. J Bacteriol 176:2137–2142

    PubMed  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Ann Rev Microbiol 49:711–745

    Article  CAS  Google Scholar 

  • Crabbe JR, Campbell JR, Thompson L, Walz SL, Scultz WW (1994) Biodegradation of a colloidal ester-based polyurethane by soil fungi. Int Biodeter Biodegr 33:103–113

    Article  Google Scholar 

  • Cromwick A-M, Gross RA (1995) Investigation by NMR of metabolic routes to bacterial γ-poly(glutamic acid) using 13C-labelled citrate and glutamate as media carbon source. Can J Microbiol 41:902–909

    Article  CAS  Google Scholar 

  • Cunningham AB, Bouwer EJ, Characklis WG (1990) Biofilms in porous media. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 697–732

    Google Scholar 

  • Cunningham AM, Characklis WG, Abedeen F, Crawford D (1991) Influence of biofilm accumulation on porous media hydrodynamics. Environ Sci Technol 25:1305–1311

    Article  CAS  Google Scholar 

  • Cunningham DP, Lundie LL Jr (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14

    PubMed  CAS  Google Scholar 

  • Dalton HM, Poulsen LK, Halasz P, Angles ML, Goodman AE, Marshall KC (1994) Substratum-induced morphological changes in a marine bacterium and their relevance to biofilm structure. J Bacteriol 176:6900–6906

    PubMed  CAS  Google Scholar 

  • Daniels L, Belay N, Rajagopal B, Weimer P (1987) Bacterial methanogenesis and growth from CO2 with elemental ion as the sole source of electrons. Science 237:509–511

    Article  PubMed  CAS  Google Scholar 

  • Danin A (1993) Biogenic weathering of marble monuments in Didim, Turkey and in Trajan Column, Rome. Water Sci Technol 27:557–563

    Article  CAS  Google Scholar 

  • Davey ME, O'Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Molec Biol Rev 64:847–867

    Article  CAS  Google Scholar 

  • Davidson D, Beheshti B, Mittelman MW (1996) Effects of Arthrobacter sp. Acidovorax delafieldii, and Bacillus megaterium colonisation on copper solvency in a laboratory reactor. Biofouling 9:279–292

    Article  CAS  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  PubMed  CAS  Google Scholar 

  • Devanathan MAV, Stachurski Z (1962) Adsorption and diffusion of electrolytic hydrogen in palladium. Proc Roy Soc Lond A 270:90–110

    Article  CAS  Google Scholar 

  • Dexter SC (1993) Role of microfouling organisms in marine corrosion. Biofouling 7:97–127

    Article  CAS  Google Scholar 

  • Dickinson WH, Caccavo F Jr, Lewandowski Z (1996) The ennoblement of stainless steel by manganic oxide biofouling. Corrosion Sci 38:1407–1422

    Article  CAS  Google Scholar 

  • Dickinson WH, Caccavo F Jr, Olesen B, Lewandowski Z (1997) Ennoblement of stainless steel by the manganese-depositing bacterium Leptothrix discophora. App lEnviron Microbiol 63:2502–2506

    CAS  Google Scholar 

  • Diercks M, Sand W, Bock E (1991) Microbial corrosion of concrete. Experientia 47:514–516

    Article  CAS  Google Scholar 

  • Dobbins JJ, Giammara BL, Hanker JS, Yates PE, DeVries WC (1989) Demonstration of the bacterial-biomaterial interface in implant specimens. In: Hanker JS, Giammara BL (eds) Biomedical materials and devices materials, vol 110. Research Society, Philadelphia, pp 337–348

    Google Scholar 

  • Doi Y (1990) Biodegradation of microbial polyesters. In: Doi Y (ed) Microbial polyesters. VCH, New York, pp 135–152

    Google Scholar 

  • Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiol Ecol 26:79–88

    Article  CAS  Google Scholar 

  • Dowling NJE, Brooks SA, Phelps TJ, White DC (1992) Effects of selection and fate of substrate supplied to anaerobic bacteria involved in the corrosion of pipe-line steel. J Ind Microbiol 10:207–215

    Article  CAS  Google Scholar 

  • Dowling NJE, Guezenec J (1997) Microbially influenced corrosion. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 842–855

    Google Scholar 

  • Downing KM, Ho CS, Zabriskie DW (1987) Enzymatic production of ethanol from cellulose using soluble cellulose acetate as an intermediate. Biotech Bioeng 29:1086–1096

    Article  CAS  Google Scholar 

  • Drake H (1994) Acetogenesis, acetogenic bacteria, and the acetyl-CoA ‘Wood/Ljungdahl’ pathway: past and current perspectives. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 1–60

    Google Scholar 

  • Dunn DS, Sridhar N, Cragnolino GA (1995) Effects of surface chromium depletion on localized corrosion of alloy 825 as a high-level nuclear waste container material. Corrosion 51:618–624

    Article  CAS  Google Scholar 

  • Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895

    Article  CAS  Google Scholar 

  • Dwyer D, Tiedje JM (1983) Degradation of ethylene glycol and polyethylene glycols by methanogenic consortia. Appl Environ Microbiol 46:185–190

    PubMed  CAS  Google Scholar 

  • Eashwar M, Martrhamuthu S, Palanichamy S, Balakrishnan K (1995) Sunlight irradiation of seawater eliminates ennoblement-causation by biofilms. Biofouling 8:215–221

    Article  CAS  Google Scholar 

  • Eckhardt FEW (1978) Microorganisms and weathering of a sandstone monument. In: Krumbein WE (ed) Environmental biogeochemistry and geomicrobiology, vol 2, The terrestrial environment. Ann Arbor Science, Ann Arbor, pp 675–586

    Google Scholar 

  • Edwards DP, Nevell TG, Plunkett BA, Ochiltree BC (1994) Resistance to marine fouling of elastomeric coatings of some poly(dimethylsiloxanes) and poly(dimethyldiphenylsiloanes). Int Biodeter Biodegr 34:349–359

    Article  CAS  Google Scholar 

  • Ehrich S, Bock E (1996) Biogenic sulfuric acid corrosion test procedure for cement bound materials. In: Sand W (ed) DECHEMA monographs, vol 133, Biodeterioration and biodegradation. VCH Verlagesellschäft, Frankfurt, pp 193–198

    Google Scholar 

  • Ehrlich HL (1996) Geomicrobial processes: a physiological and biochemical overview. In: Ehrlich HL (ed) Geomicrobiology, 3rd edn. Marcel Dekker, New York, pp 108–142

    Google Scholar 

  • El-Sayed AHMM, Mohmoud WM, Davis EM, Coughlin RW (1996) Biodegradation of polyurethane coatings by hydrocarbon-degrading bacteria. Int Biodeter Biodegr 37:69–79

    Article  Google Scholar 

  • Emerson A, Moyer C (1997) Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 63:4784–4792

    PubMed  CAS  Google Scholar 

  • Enos DG, Taylor SR (1996) Influence of sulfate-reducing bacteria on alloy 625 and austenitic stainless steel weldments. Corrosion 52:831–842

    Article  CAS  Google Scholar 

  • Evans UR (1948) An outline of corrosion mechanisms, including the electrochemical theory. In: Uhlig HH (ed) The corrosion handbook. Wiley, New York, pp 3–11

    Google Scholar 

  • Ezeonu IM, Noble JA, Simmons RB, Price DL, Crow SA, Ahearn DG (1994a) Effect of relative humidity on fungal colonization of fiberglass insulation. Appl Environ Microbiol 60:2149–2151

    PubMed  CAS  Google Scholar 

  • Ezeonu IM, Price DL, Simmons RB, Crow SA, Ahearn DG (1994b) Fungal production of volatiles during growth on fiberglass. Appl Environ Microbiol 60:4172–4173

    PubMed  CAS  Google Scholar 

  • Fabbri AA, Ricelli A, Brasini S, Fanelli C (1997) Effect of different antifungals on the control of paper biodeterioration caused by fungi. Int Biodeter Biodegr 39:61–65

    Article  CAS  Google Scholar 

  • Feddema JJ, Mererding TC (1991) Marble deterioration in the urban atmosphere. In: Baer NS, Sabbioni C, Sors AI (eds) Science, technology and European cultural heritage. Butterworth-Heinemann, Oxford/England, pp 443–446

    Google Scholar 

  • Fenchel T, Finlay BJ (1995) Anaerobic environments. In: Fenchel T, Finlay BJ (eds) Ecology and evolution in anoxic Worlds. Oxford University Press, New York, pp 1–31

    Google Scholar 

  • Ferry JG (1995) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis: ecology, physiology, biochemistry and genetics. Chapman and Hall, New York, pp 128–206

    Google Scholar 

  • Filip Z (1978) Decomposition of polyurethane in a garbage landfill leakage water and by soil microorganisms. Eur J Appl Microbiol 5:225–231

    Article  CAS  Google Scholar 

  • Fischer W, Haenßel I, Paradies HH (1987) Gutachten: Schadensanalyse von Korrosionshäden an Brauchwasserleitungen aus Kupferrohren im Krieskrankenhaus Lüdenscheid/Hellersen, FRG Märkischer Kreis 17 March

    Google Scholar 

  • Flemming H-C, Schaule G, McDonogh R, Ridgway HF (1994) Effects and extent of biofilm accumulation in membrane systems. In: Geesey GG, Lewandowski Z, Flemming HC (eds) Biofouling and biocorrosion in industrial water systems. Lewis, Boca Raton, pp 63–89

    Google Scholar 

  • Fletcher M, Loeb GI (1979) Influence of substratum characteristics on the attachment of a marine Pseudomonad to solid surfaces. Appl Environ Microbiol 37:67–72

    PubMed  CAS  Google Scholar 

  • Fletcher M (1980) Adherence of marine micro-organisms to smooth surfaces. In: Beachey EH (ed) Bacterial adherence, vol 6, Receptors and recognition, Series B. Chapman and Hall, London, pp 345–374

    Chapter  Google Scholar 

  • Fletcher M (1996) Bacterial attachment in aquatic environments: a diversity of surfaces and adhesion strategies. In: Fletcher M (ed) Bacterial adhesion: molecular and ecological diversity. Wiley-Liss, New York, pp 1–24

    Google Scholar 

  • Flores M, Lorenzo J, Gomez-Alarcon G (1997) Algae and bacteria on historic monuments at Alcala de Henares, Spain. Int Biodeter Biodegr 40:241–246

    Article  Google Scholar 

  • Florian M-LE (1996) The role of the conidia of fungi in fox spots. Studies Conserv 41:65–75

    Article  Google Scholar 

  • Ford T, Black JP, Mitchell R (1986) Relationship between bacterial exopolymers and corroding metal surfaces. National Association of Corrosion Engineers, Houston

    Google Scholar 

  • Ford T, Maki J, Mitchell R (1987a) The role of metal-binding bacterial exopolymers in corrosion processes. National Association of Corrosion Engineers, Houston, pp 87–380

    Google Scholar 

  • Ford TE, Walch M, Mitchell R (1987b) Corrosion of metals by thermophilic microorganisms. Mat Perf 26:35–39

    CAS  Google Scholar 

  • Ford T, Maki J, Mitchell R (1988) Involvement of bacterial exopolymers in biodeterioration of metals. In: Houghton DR, Smith RN, Eggins HOW (eds) Biodeterioration, vol 7. Elsevier Science, New York, pp 378–384

    Chapter  Google Scholar 

  • Ford T, Mitchell R (1990a) Metal embrittlement by bacterial hydrogen – an overview. Marine Technol Soc J 24:29–35

    Google Scholar 

  • Ford T, Mitchell R (1990b) The ecology of microbial corrosion. In: Marshall KC (ed) Advances in microbial ecology, vol 11. Plenum Press, New York, pp 231–262

    Chapter  Google Scholar 

  • Ford TE, Seaison PC, Harris T, Mitchell R (1990a) Investigation of microbiologically produced hydrogen permeation through palladium. J Electrochem Soc 137:1175–1179

    Article  CAS  Google Scholar 

  • Ford TE, Black JP, Mitchell R (1990b) Relationship between bacterial exopolymers and corroding metal surfaces. NACE International, Houston, pp 90–110

    Google Scholar 

  • Ford T, Sacco E, Black J, Kelley T, Goodacre R, Berkley RCW, Mitchell R (1991) Characterization of exopolymers of aquatic bacteria by pyrolysis-mass spectroscopy. Appl Environ Microbiol 57:1595–1601

    PubMed  CAS  Google Scholar 

  • Ford T, Mitchell R (1992) Microbial transport of toxic metals. In: Mitchell R (ed) Environmental microbiology. Wiley, New York, pp 83–101

    Google Scholar 

  • Ford TE (1993) The microbial ecology of water distribution and outfall systems. In: Ford TE (ed) Aquatic microbiology: an ecological approach. Blackwell Scientific, Boston, pp 455–482

    Google Scholar 

  • Ford T, Maki J, Mitchell R (1995) Metal-microbe interactions. In: Gaylarde CC, Videla HA (eds) Bioextraction and biodeterioration of metals. Cambridge University Press, New York, pp 1–23

    Google Scholar 

  • Fortin D, Southam G, Beveridge TJ (1994) Nickel sulfide, iron-nickel sulfide and iron sulfide precipitation by a newly isolated Desulfotomaculum species and its relation to nickel resistance. FEMS Microbiol Ecol 14:121–132

    Article  CAS  Google Scholar 

  • Frazer AC (1994) O-methylation and other transformations of aromatic compounds by acetogenic bacteria. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 445–483

    Chapter  Google Scholar 

  • Freeman C, Lock MA (1995) The biofilm polysaccharide matrix: a buffer against changing organic substrate supply? Limnol Oceanogr 40:273–278

    Article  CAS  Google Scholar 

  • Frings J, Schramm E, Schink B (1992) Enzymes involved in anaerobic polyethylene glycol degradation by Pelobacter venetianus and Bacteroides Strain PG1. Appl Environ Microbiol 58:2164–2167

    PubMed  CAS  Google Scholar 

  • Fuchs DR, Popall M, Römich H, Schmidt H (1991) Preservation of stained glass windows: new materials and techniques. In: Baer NS, Sabbioni C, Sors AI (eds) Science, technology and european cultural heritage. Butterworth-Heinemann, Oxford/England, pp 679–683

    Google Scholar 

  • Gamerith G, Groicher R, Zeilinger S, Herzog P, Kubicek CP (1992) Cellulase-poor xylanases produced by Trichoderma reesei RUT C-30 on hemicellulose substrates. Appl Microbiol Biotechnol 38:315–322

    Article  CAS  Google Scholar 

  • Gangloff RP, Kelly RG (1994) Microbe-enhanced environmental fatigue crack propagation in HY130 steel. Corrosion 50:345–354

    Article  CAS  Google Scholar 

  • Garcia de Miguel JM, Sanchez-Castillo L, Ortega-Calvo JJ, Gil JA, Saiz-Jimenez C (1995) Deterioration of building materials from the Great Jaguar Pyramid at Tikal. Guatemala Build Environ 30:591–598

    Article  Google Scholar 

  • Gazenko OG, Grigoryev AI, Bugrov SA, Yegorov VV, Bogomolov VV, Kozlovskaya IB, Tarasov IK (1990) Review of the major results of medical research during the flight of the second prime crew of the Mir space station (in Russian) Kosmicheskaya Biologiya i Aviakosmicheskaya Medistina 23:3–11

    Google Scholar 

  • Gebers R, Hirsch P (1978) Isolation and investigation of Pedomicrobium spp., heavy metal-depositing bacteria from soil habitats. In: Krumbein WE (ed) Environmental biogeochemistry and geomicrobiology: methods, metals and assessment, vol 3. Ann Arbor Science, Ann Arbor, pp 911–922

    Google Scholar 

  • Geesey GG, Mittelman MW, Iwaoka T, Griffiths PR (1986) Role of bacterial exopolymers in the deterioration of copper surfaces. Mat Perf 25:37–40

    CAS  Google Scholar 

  • Geesey GG, White DC (1990) Determination of bacterial growth and activity at solid-liquid interfaces. Ann Rev Microbiol 44:579–602

    Article  CAS  Google Scholar 

  • Geesey GG, Gills RJ, Avci R, Daly D, Hamilton M, Shope P, Harkon G (1996) The influence of surface features on bacterial colonization and subsequent substratum chemical changed of 316 L stainless steel. Corrosion Sci 38:73–95

    Article  CAS  Google Scholar 

  • Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747

    PubMed  CAS  Google Scholar 

  • Gelmi M, Apostoli P, Cabibbo E, Porrru S, Alessio L, Turano A (1994) Resistance to cadmium salts and metal absorption by different microbial species. Curr Microbiol 29:335–341

    Article  CAS  Google Scholar 

  • Ghassem H, Adibi N (1995) Bacterial corrosion of reformer heater tubes. Mat Perf 34:47–48

    CAS  Google Scholar 

  • Ghiorse WC, Hirsch P (1978) Iron and manganese deposition by budding bacteria. In: Krumbein WE (ed) Environmental Biogeochemistry and geomicrobiology, vol 3, Methods, metals and assessment. Ann Arbor Science, Ann Arbor, pp 897–909

    Google Scholar 

  • Ghiorse WC, Hirsch P (1979) An ultrastructural study of iron and manganese deposition associated with extracellular polymers of Pedomicrobium-like budding bacteria. Arch Microbiol 123:213–226

    Article  CAS  Google Scholar 

  • Ghiorse WC (1989) Manganese and iron as physiological electron donors and acceptors in aerobic-anaerobic transition zones. In: Cohen Y, Rosenberg E (eds) Microbial mats: physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC, pp 163–169

    Google Scholar 

  • Gibson DT, Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 181–252

    Google Scholar 

  • Gillatt J (1990) The biodeterioration of polymer emulsions and its prevention with biocides. Int Biodeter 26:205–216

    Article  CAS  Google Scholar 

  • Gillis RJ, Gillis JR (1996) A comparative study of bacterial attachment to high-purity water system surfaces. Ultrapure Water 9:27–36

    Google Scholar 

  • Gilmore DF, Antoun S, Lenz RW, Goodwin S, Austin R, Fuller RC (1992) The fate of biodegradable plastics in municipal leaf compost. J Indust Microbiol 10:199–206

    Article  CAS  Google Scholar 

  • Gilmore DF, Antoun S, Lenz RW, Fuller RC (1993) Degradation of poly(β-hydroxyalkanoates) and polyolefin blends in a municipal wastewater treatment facility. J Environ Polym Degr 1:269–274

    Article  CAS  Google Scholar 

  • Glagolev AN (1984) Motility and taxis in prokaryotes. In: Skulachev VP (ed) Soviet scientific reviews supplement series: physicochemical biology. Harwood Academic, Zurich, pp 59–64

    Google Scholar 

  • Gómez-Alarcón G, Cilleros B, Flores M, Lorenzo J (1995a) Microbial communities and alteration processes in monuments at Alcala de Henares, Spain. Sci Total Environ 167:231–239

    Article  Google Scholar 

  • Gómez-Alarcón G, Munoz M, Arino X, Ortega-Calvo JJ (1995b) Microbial communities in weathered sandstone: the case of Carrascosa del Campo church, Spain. Sci Total Environ 169:249–254

    Article  Google Scholar 

  • Gottschalk G (1986) Regulation of bacterial metabolism. In: Gottschalk G (ed) Bacterial metabolism, 2nd edn. Springer, New York, pp 178–282

    Chapter  Google Scholar 

  • Gross RA, Gu J-D, Eberiel D, Nelson M, McCarthy SP (1993) Cellulose acetate biodegradability in simulated aerobic composting and anaerobic bioreactors as well as by a bacterial isolate derived from compost. In: Kaplan D, Thomas E, Ching C (eds) Fundamentals of biodegradable materials and packaging. Technomic, Lancaster, pp 257–279

    Google Scholar 

  • Gross RA, Gu JD, Eberiel D, McCarthy SP (1995) Laboratory scale composting test methods to determine polymer degradability: model studies on cellulose acetate. In: Albertson A, Huang S (eds) Degradable polymers, recycling and plastics waste management. Marcel Dekker, New York, pp 21–36

    Google Scholar 

  • Gu J-D, Berry DF (1991) Degradation of substituted indoles by an indole-degrading methanogenic consortium. Appl Environ Microbiol 57:2622–2627

    PubMed  CAS  Google Scholar 

  • Gu J-D, Berry DF (1992) Metabolism of 3-methylindole by a methanogenic consortium. Appl Environ Microbiol 58:2667–2669

    PubMed  CAS  Google Scholar 

  • Gu J-D, Berry DF, Taraban RH, Martens DC, Walker HL Jr, Edmonds WJ (1992a) Biodegradability of atrazine, cyanazine, and dicamba in wetland soils. Virginia Water Resource Research Center, Blacksburg

    Google Scholar 

  • Gu J-D, Gada M, Kharas G, Eberiel D, McCarty SP, Gross RA (1992b) Degradability of cellulose acetate (1. 7 and 2. 5, d. s.) and poly(lactide) in simulated composting bioreactors. Polym Mater Sci Engin 67:351–352

    CAS  Google Scholar 

  • Gu J-D, McCarty SP, Smith GP, Eberiel D, Gross RA (1992c) Degradability of cellulose acetate (1.7, d.s.) and cellophane in anaerobic bioreactors. Polym Mat Sci Engin 67:230–231

    CAS  Google Scholar 

  • Gu J-D, Coulter S, Eberiel D, McCarthy SP, Gross RA (1993a) A respirometric method to measure mineralization of polymeric materials in a matured compost environment. J Environ Polym Degr 1:293–299

    Article  CAS  Google Scholar 

  • Gu J-D, Eberiel DT, McCarthy SP, Gross RA (1993b) Cellulose acetate biodegradability upon exposure to simulated aerobic composting and anaerobic bioreactor environments. J Environ Polym Degr 1:143–153

    Article  CAS  Google Scholar 

  • Gu J-D, Eberiel D, McCarthy SP, Gross RA (1993c) Degradation and mineralization of cellulose acetate in simulated thermophilic composting environment. J Environ Polym Degr 1:281–291

    Article  CAS  Google Scholar 

  • Gu J-D, Ford TE, Thorp KEG, Mitchell R (1994a) Microbial degradation of polymeric materials. In: Naguy T (ed) Proceedings of the tri-service conference on corrosion, 21–23 June 1994, Orlando, Florida. US Government Printing House, Washington, DC, pp 291–302

    Google Scholar 

  • Gu J-D, Yang S, Welton R, Eberiel D, McCarthy SP, Gross RA (1994b) Effects of environmental parameters on the degradability of polymer films in laboratory-scale composting reactors. J Environ Polym Degr 2:129–135

    Article  CAS  Google Scholar 

  • Gu J-D, Mitchell R (1995) Microbiological influenced corrosion of metal, degradation and deterioration of polymeric materials of space application (in English). Chinese J Mat Res 9(Suppl):473–489

    Google Scholar 

  • Gu J-D, Ford TE, Mitton B, Mitchell R (1995a) Microbial degradation of complex polymeric materials used as insulation in electronic packaging materials. National Association of Corrosion Engineers, Houston

    Google Scholar 

  • Gu J-D, Ford TE, Thorp KEG, Mitchell R (1995b) Effects of microorganisms on stability of fiber reinforced polymeric composites. In: Hui D (ed) Second international conference on composites engineering. University of New Orleans, 21–24 Aug 1995, pp 279–280

    Google Scholar 

  • Gu J-D, Ford TE, Thorp KEG, Mitchell R (1995c) Microbial biodeterioration of fiber reinforced composite materials. In: Angell P, Borenstein SW, Buchanan RA, Dexter SC, Dowling NJE, Little BJ, Lundin CD, McNeil MB, Pope DH, Tatnall RE, White DC, Zigenfuss HG (eds) 1995 international conference on microbial influenced corrosion. NACE International, Houston TX 25/1–7

    Google Scholar 

  • Gu J-D, Ford TE, Thorp KEG, Mitchell R (1995d) Microbial deterioration of fiber reinforced polymeric materials. In: Scully J (ed) Corrosion/95, Research in progress symposium. NACE International, Houston, pp 16–17

    Google Scholar 

  • Gu J-D, Ford TE, Berke NS, Mitchell R (1996a) Fungal degradation of concrete. In: Sand W (ed) DECHEMA monographs, Biodeterioration and biodegradation, vol 133. VCH, Frankfurt, pp 135–142

    Google Scholar 

  • Gu J-D, Ford TE, Mitchell R (1996b) Susceptibility of electronic insulating polyimides to microbial degradation. J Appl Polym Sci 62:1029–1034

    Article  CAS  Google Scholar 

  • Gu J-D, Ford T, Thorp K, Mitchell R (1996c) Microbial growth on fiber reinforced composite materials. Int Biodeter Degr 39:197–204

    Article  Google Scholar 

  • Gu J-D, Lu C, Thorp K, Crasto A, Mitchell R (1996d) Susceptibility of polymeric coatings to microbial degradation. NACE International, Houston

    Google Scholar 

  • Gu J-D, Thorp K, Crasto A, Mitchell R (1996e) Microbiological degradation of fiber-reinforced polymeric composites. In: The electrochemical society spring meeting, 5–10 May 1996, Los Angeles The Electrochemical Society, Pennington, pp 143–144

    Google Scholar 

  • Gu J-D, Lu C, Thorp K, Crasto A, Mitchell R (1997a) Fiber-reinforced polymeric composite materials are susceptible to microbial degradation. J Ind Microbiol Biotechnol 18:364–369

    Article  PubMed  CAS  Google Scholar 

  • Gu J-D, Lu C, Thorp K, Crasto A, Mitchell R (1997b) Fungal degradation of fiber-reinforced composite materials. Mat Perf 36:37–42

    CAS  Google Scholar 

  • Gu J-D, Maki JS, Mitchell R (1997c) Microbial biofilms and their role in the induction and inhibition of invertebrate settlement. In: D’Itri FM (ed) Zebra mussels and aquatic nuisance species. Ann Arbor Press, Chelsea, pp 343–357

    Google Scholar 

  • Gu J-D, Ford TE, Berke NS, Mitchell R (1998a) Biodeterioration of concrete by the fungus Fusarium. Int Biodeter Biodegr 41:101–109

    Article  Google Scholar 

  • Gu J-D, Mitton DB, Ford TE, Mitchell R (1998b) Microbial degradation of polymeric coatings measured by electrochemical impedance spectroscopy. Biodegradation 9:35–39

    Article  Google Scholar 

  • Gu J-D, Roman M, Esselman T, Mitchell R (1998c) The role of microbial biofilms in deterioration of space station candidate materials. Int Biodeter Biodegr 41:25–33

    Article  CAS  Google Scholar 

  • Gu J-D, Ford TE, Mitchell R (2000a) Microbial corrosion of metals. In: Revie W (ed) The H. H. Uhlig corrosion handbook, 2nd edn. Wiley, New York, pp 915–927

    Google Scholar 

  • Gu J-D, Ford TE, Mitchell R (2000b) Microbial corrosion of concrete. In: Revie W (ed) The H. H. Uhlig corrosion handbook, 2nd edn. Wiley, New York, pp 477–491

    Google Scholar 

  • Gu J-D, Ford TE, Mitchell R (2000c) Microbial degradation of materials: general processes. In: Revie W (ed) The H. H. Uhlig corrosion handbook, 2nd edn. Wiley, New York, pp 349–365

    Google Scholar 

  • Gu J-D, Ford TE, Mitton DB, Mitchell R (2000d) Microbial degradation and deterioration of polymeric materials. In: Revie W (ed) The H. H. Uhlig corrosion handbook, 2nd edn. Wiley, New York, pp 439–460

    Google Scholar 

  • Gu J-D, Gu J-G, Li XY (2000e) Degradation of poly(hydroxybutyrate-co-16 % valerate) and cellulose acetate (DS 1. 7 and 2. 5) under simulated landfill condition. In: Bao X, Englande AJ (eds) Critical technologies to the World in 21th Century: pollution control and reclamation in process industries, September 18–20, 2000 International Water Association (IWA) Beijing P.R. China, pp 564–572

    Google Scholar 

  • Gu J-D, Cheung KH (2001) Phenotypic expression of Vogesella indigofera upon exposure to hexavalent chromium, Cr6+. World J Microbiol Biotechnol 17:475–480

    Article  CAS  Google Scholar 

  • Gu J-D, Belay B, Mitchell R (2001) Protection of catheter surfaces from adhesion of Pseudomonas aeruginosa by a combination of silver ions and lectins. World J Microbiol Biotechnol 17:173–179

    Article  CAS  Google Scholar 

  • Gu J-D, Gu J-G, Shi HC, Li XY (2001b) Simulating anaerobic landfill conditions in bioreactors and testing polymer degradability using poly(β-hydroxybutyrate-co-16 % valerate) and cellulose acetates (DS 1.7 and 2.5) Water Sci Technol

    Google Scholar 

  • Guezennec J, Ortega-Morales O, Raguenes G, Geesey G (1998) Bacterial colonization of artificial substrate in the vicinity of deep-sea hydrothermal vents. FEMS Microbiol Ecol 26:89–99

    Article  CAS  Google Scholar 

  • Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15:127–167

    CAS  Google Scholar 

  • Gunjala KR, Sulflita JM (1993) Environmental factors influencing methanogenesis from refuse in landfill samples. Environ Sci Technol 27:1176–1181

    Article  Google Scholar 

  • Hadley RF (1948) Corrosion by micro-organisms in aqueous and soil environments. In: Uhlig HH (ed) The corrosion handbook. Wiley, New York, pp 466–481

    Google Scholar 

  • Hahn PO, Rubloff GW, Bartha JW, Legoues F, Tromp R, Ho PS (1985) Chemical interactions at metal-polymer interfaces. Mat Res Soc Symp Proc 40:251–263

    Article  CAS  Google Scholar 

  • Hamilton WA (1985) Sulphate-reducing bacteria and anaerobic corrosion. Ann Rev Microbiol 39:195–217

    Article  CAS  Google Scholar 

  • Hamilton JD, Reinert KH, Hogan JV, Lord WV (1995) Polymers as solid waste in municipal landfills. J Air Waste Manag Assoc 43:247–251

    Google Scholar 

  • Hanert HH (1981) The Genus Siderocapsa (and other iron-or manganese-oxidizing eubacteria). In: Starr MP, Stolp H, Trüper HG, Balow A, Schlegel HG (eds) The prokaryotes, vol 1. Springer, New York, pp 1049–1060, http://www.prokaryotes.com

  • Hass H, Herfurth E, Stöffler G, Redl B (1992) Purification, characterization and partial amino acid sequences of a xylanase produced by Penicillium chrysogenum. Biochim Biophys Acta 1117:279–286

    Article  Google Scholar 

  • Heisey RM, Papadatos S (1995) Isolation of microorganisms able to metabolize purified natural rubber. Appl Environ Microbiol 61:3092–3097

    PubMed  CAS  Google Scholar 

  • Hernandez G, Kucera V, Thierry D, Pedersen A, Hermansson M (1994) Corrosion inhibition of steel by bacteria. Corrosion 50:603–608

    Article  CAS  Google Scholar 

  • Hespell RB, O'Bryan-Shah PJ (1988) Esterase activities in Butyrivibrio fibrisolvens strains. Appl Environ Microbiol 54:1917–1922

    PubMed  CAS  Google Scholar 

  • Hill EC (1987) Microbial problems in the off-shore oil industry. Institute of Petroleum, London, pp 25–28

    Google Scholar 

  • Hirsch P, Eckhardt F, Palmer RJ (1995a) Fungi active in weathering of rock and stone monuments. Can J Bot 73:1384–1390

    Article  Google Scholar 

  • Hirsch P, Eckhardt FEW, Palmer RJ Jr (1995b) Methods for the study of rock-inhabiting microorganisms – a mini review. J Microbiol Meth 23:143–167

    Article  Google Scholar 

  • Holland KT, Knapp JS, Shoesmith JG (1986) Industrial applications of anaerobes. In: Anaerobic bacteria. Chapman and Hall, New York, pp 165–188

    Google Scholar 

  • Holmes PA, Wright LF, Colins SH (1985) β-hydroxybutyrate polymers. European Patent Application EP 52, 459

    Google Scholar 

  • Holmström C, Rittschof D, Kjelleberg S (1992) Inhibition of settlement by larvae of Balanus amphitrite and Ciona intestinalis by a surface-colonizing marine bacterium. Appl Environ Microbiol 58:2111–2115

    PubMed  Google Scholar 

  • Huang C-T, James G, Pitt WG, Stewart PS (1996) Effects of ultrasonic treatment on the efficacy of gentamicin against established Pseudomonas aeruginosa biofilms. Colloid Surf B Biointerf 6:235–242

    Article  CAS  Google Scholar 

  • Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone Hot Spring. J Bacteriol 180:366–376

    PubMed  CAS  Google Scholar 

  • Hugo WB (1995) A brief history of heat, chemical and radiation preservation and disinfection. Int Biodeter Biodegr 35:197–217

    Article  Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 38. Academic, New York, pp 117–132

    Google Scholar 

  • Hutchinson AJ, Johnson JB, Thompson GE, Wood GC, Sage PW, Cooke MJ (1993) Stone degradation due to wet deposition of pollutants. Corrosion Sci 34:1881–1898

    Article  CAS  Google Scholar 

  • Illmer P, Schinner F (1999) Influence of nutrient solution on Al-tolerance of Pseudomonas sp. FEMS Microbiol Lett 170:187–190

    Article  CAS  Google Scholar 

  • Iman SH, Gould JM (1990) Adhesion of an amylolytic Arthrobacter sp. to starch-containing plastic films. Appl Environ Microbiol 56:872–876

    Google Scholar 

  • Iman SH, Gould JM, Gordon SH, Kinney MP, Ramsey AM, Tosteson TR (1992) Fate of starch-containing plastic films exposed in aquatic habitats. Curr Microbiol 25:1–8

    Article  Google Scholar 

  • Islam M, Thompson NG, Lankard DR, Virmani YP (1995) Quantitative identification of environmental factors in corrosion induced deterioration of reinforced bridge structures. National Association of Corrosion Engineers, Houston

    Google Scholar 

  • Iverson WP (1981) An overview of the anaerobic corrosion of underground metallic structures, evidence for a new mechanism. In: Escalante E (ed) Underground corrosion. American Society for Testing and Materials, Philadelphia, Technical Publication No. 741, pp 33–52

    Google Scholar 

  • Iverson WP, Olsen GJ (1983) Anaerobic corrosion by sulfate-reducing bacteria due to highly reactive volatile phosphorus compounds. In: Microbial corrosion. The Metal Society, London, pp 46–53

    Google Scholar 

  • Iverson WP (1984) Mechanism of anaerobic corrosion of steel by sulfate reducing bacteria. Mat Perf 23:28–30

    CAS  Google Scholar 

  • Iverson WP, Olsen GJ (1984) Problems relating to sulfate-reducing bacteria in the petroleum industry. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New York, pp 619–641

    Google Scholar 

  • Iverson WP, Olsen GJ, Heverly LF (1986) The role of phosphorus and hydrogen sulfide in the anaerobic corrosion of iron and the possible detection of this corrosion by an electrochemical noise technique. In: Dexter SC (ed) Biological influenced corrosion. National Association of Corrosion Engineers, Houston, pp 154–161

    Google Scholar 

  • Jain KK, Mishra AK, Singh T (1993) Biodeterioration of stone: a review of mechanisms involved. In: Garg KL, Garg N, Mukerji KG (eds) Recent advances in biodeterioration and biodegradation. Naya Prokash, Calcutta, pp 323–354

    Google Scholar 

  • Jayaraman A, Earthman JC, Wood TK (1997) Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Appl Microbiol Biotechnol 47:62–68

    Article  CAS  Google Scholar 

  • Jayaraman A, Ornek D, Duarte DA, Lee C-C, Wood TK (1999) Axenic aerobic biofilms inhibit corrosion of copper and aluminum. Appl Microbiol Biotechnol 52:787–790

    Article  PubMed  CAS  Google Scholar 

  • Jazsa P-G, Kußmaul M, Bock E (1996a) Simulation of concrete corrosion by nitrifying bacteria. In: Sand W (ed) DECHEMA Monographs, vol 133: biodeterioration and biodegradation. VCH Verlagesellschäft, Frankfurt, pp 127–134

    Google Scholar 

  • Jazsa P-G, Stüven R, Bock E, Kußmaul M (1996b) Statistical data analysis of microbially influenced deterioration of concrete. In: Sand W (ed) DECHEMA monographs, vol 133: Biodeterioration and Biodegradation VCH Verlagesellschäft Frankfurt, pp 199–208

    Google Scholar 

  • Jensen RJ (1987) Polyimides as interlayer dielectrics for high-performance interconnections of integrated circuits. In: Bouwden MJ, Turner SR (eds) Polymers for high technology: electronics and photonics. American Chemical Society, ACS Symp. Ser. 346, Washington, DC, pp 466–483

    Google Scholar 

  • Jensen RA (1992) Marine bioadhesive: role for chemosensory recognition in a marine invertebrate. Biofouling 5:177–193

    Article  CAS  Google Scholar 

  • John ME, Keller G (1996) Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci USA 93:12768–12773

    Article  PubMed  CAS  Google Scholar 

  • Jones-Meehan J, Vasanth KL, Conrad RK, Fernandez M, Little BJ, Ray RI (1994a) Corrosion resistance of several conductive caulks and sealants from marine field tests and laboratory studies with marine, mixed communities containing sulfate-reducing bacteria (SRB). In: Kearns JR, Little BJ (eds) Microbiologically influenced corrosion testing. American Society for Testing and Materials, Philadelphia, ASTM STP 1232, pp 217–233

    Google Scholar 

  • Jones-Meehan J, Walch M, Little BJ, Ray RI, Mansfeld FB (1994b) Effect of mixed sulfate-reducing bacterial communities on coatings. In: Geesey GG, Lewandowski Z, Flemming HC (eds) Biofouling and biocorrosion in industrial water systems. Lewis, Boca Raton, pp 107–135

    Google Scholar 

  • Jorgensen BB (1988) Ecology of the sulphur cycle: oxidative pathways in sediments. In: Cole JA, Ferguson SJ (eds) The nitrogen and sulphur cycles. Cambridge University Press, New York, pp 31–63

    Google Scholar 

  • Karlsson S, Ljungquist O, Albertsson A-C (1988) Biodegradation of polyethylene and the influence of surfactants. Polym Degr Stab 21:237–250

    Article  CAS  Google Scholar 

  • Kawai F, Yamanaka H (1986) Biodegradation of polyethylene glycol by symbiotic mixed culture (obligate mutualism). Arch Microbiol 146:125–129

    Article  PubMed  CAS  Google Scholar 

  • Kawai F (1987) The biochemistry of degradation of polyethers. CRC Biotechnol 6:273–307

    Article  CAS  Google Scholar 

  • Kawai F, Moriya F (1991) Bacterial assimilation of polytetramethylene glycol. J Ferment Bioeng 71:1–5

    Article  CAS  Google Scholar 

  • Keevil CW, Mackerness CW (1990) Biocide treatment of biofilms. Int Biodeter 26:169–179

    Article  CAS  Google Scholar 

  • Kelley DP (1981) Introduction to the chemolithotrophic bacteria. In: Starr MP, Stolp H, Trüper HG, Balow A, Schlegel HG (eds) The prokaryotes. Springer, New York, pp 1023–1036, http://www.prokaryotes.com

  • Kelley K, Ishino Y, Ishida H (1987) Fourier transform IR reflection techniques for characterization of polyimide films on copper substrates. Thin Solid Films 154:271–279

    Article  CAS  Google Scholar 

  • Kelly DP (1981) Oxidation of sulphur compounds. In: Cole JA, Ferguson SJ (eds) The nitrogen cycle. Cambridge University Press, New York, pp 997–1004

    Google Scholar 

  • Kelly-Wintenberg K, Montie TC (1994) Chemotaxis to oligopeptides by Pseudomonas aeruginosa. Appl Environ Microbiol 60:363–367

    PubMed  CAS  Google Scholar 

  • Kemnitzer JE, McCarthy SP, Gross RA (1992) Poly(β-hydroxybutyrate) stereoisomers: a model study of the effects of stereochemical and morphological variables on polymer biological degradability. Macromolecules 22:5927–5934

    Article  Google Scholar 

  • Kemnitzer JE, McCarthy SP, Gross RA (1993) Syndiospecific ring-opening polymerization of β-butyrolactone to form predominantly syndiotactic poly(β-hydroxybutyrate) using Tin (IV) catalysts. Macromolecules 23:6143–6150

    Article  Google Scholar 

  • Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65:4734–4740

    PubMed  CAS  Google Scholar 

  • Kim O, Gross RA, Rutherford DR (1995) Bioengineering of poly(β-hydroxyalkanoates) for advanced material applications: incorporation of cyano and nitrophenoxy side chain substituents. Can J Microbiol 41(Suppl):32–43

    Article  CAS  Google Scholar 

  • Kim B-K, de Macario EC, Nölling J, Daniels L (1996) Isolation and characterization of a copper-resistant methanogen from a copper-mining soil samples. Appl Environ Microbiol 62:2629–2635

    PubMed  CAS  Google Scholar 

  • King B, Eggins HOW (1972) Some observations on decay mechanisms of microfungi deteriorating wood. In: Walters AH, Hueck-van der Plas EH (eds) Biodeterioration of materials. Halsted Press/Wiley, New York, pp 145–151

    Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614

    Article  PubMed  CAS  Google Scholar 

  • Kluyver AJ, van Niel CB (1956) Life’s flexibility, microbial adaptation. In: Kluyver AJ, van Niel CB (eds) The microbe’s contribution to biology. Harvard University Press, Cambridge, pp 93–129

    Google Scholar 

  • Knudsen JG (1981) Fouling of heat transfer surfaces. In: Marto PJ (ed) Power condenser heat transfer technology. Hemisphere, New York, pp 57–82

    Google Scholar 

  • Knyazev VM, Korolkov VI, Viktorov AN, Pozharskiy GO, Petrova LN, Gorshkov VP (1986) Sanitary and microbiological aspects of closed environment occupied by people and animals (in Russian) Kosmicheskaya Biologiya i Aviakosmicheskaya Medistina 20:80–82

    Google Scholar 

  • Kobrin G, Tatnall RE (1993) Introduction a practical manual on microbiological influenced corrosion. NACE International, Houston, pp 68–72

    Google Scholar 

  • Koenig DW, Mishra SK, Pierson DL (1995) Removal of Burkholderia Cepacia biofilms with oxidants. Biofouling 9:51–62

    Article  PubMed  CAS  Google Scholar 

  • Kong K, Johnstone DL, Yonge DR, Petersen JN, Brouns TM (1994) Long-term intracellular chromium partitioning with subsurface bacteria. Appl Microbiol Biotechnol 42:403–407

    Article  CAS  Google Scholar 

  • Konhauser KO, Schultze-Lam S, Ferris FG, Fyfe WS, Longstaffe FJ, Beveridge TJ (1994) Mineral precipitation by epilithic biofilms in the Speed River, Ontario, Canada. Appl Environ Microbiol 60:549–553

    PubMed  CAS  Google Scholar 

  • Korber DR, Lawrence JR, Sutton B, Caldwell DE (1989) Effect of laminar flow velocity on the kinetics of surface recolonization by Mot+ and Mot Pseudomonas fluorescens. Microb Ecol 18:1–9

    Article  Google Scholar 

  • Kormelink FJM, Voragen J (1993) Degradation of different [ (glucurono)arabino]xylans by a combination of purified xylan-degrading enzymes. Appl Microbiol Biotechnol 38:688–695

    Article  CAS  Google Scholar 

  • Krieg NR, Holt JG (1984) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimor, p 1, http://www.cme.msu.edu/bergeys

  • Krumbein WE (1968) Inquiry on biological decomposition: the influence of microflora on the decomposition of building stone and its dependence on edaphic factors. Zeitschrift für Allgemeine Microbiologie 8:107–117

    Article  CAS  Google Scholar 

  • Kuenen JG, Tuovinen OH (1981) The genera Thiobacillus and Thiomicrospira. In: Starr MP, Stolp H, Trüoper HG, Balow A, Schlegel HG (eds) The prokaryotes. Springer, New York, pp 1023–1036, http://www.prokaryotes.com

  • KulpaCF, Baker CJ (1990) Involvement of sulfur-oxidizing bacteria in concrete deterioration. In: Dowling NJ, Mittelman MW, Danko JC (eds) Microbially influenced corrosion and biodeterioration. National Association of Corrosion Engineers, Houston, pp 4/7–4/9

    Google Scholar 

  • Kumar R, Venkataraman A (1996) Biodeterioration of stone monuments in tropical regions: a review of current research status. The Getty Conservation Institute, Marina del Rey, pp 1–63

    Google Scholar 

  • Lai JH (1989) Polymers for electronic applications. CRC Press, Boca Raton, pp 23–24

    Google Scholar 

  • Lappin-Scott H, Costerton JW, Marrie TJ (1992) Biofilms and biofouling. In: Encyclopedia of microbiology, vol 1, pp 277–284

    Google Scholar 

  • Lauwers AM, Heinen W (1974) Biodegradation and utilization of silica and quartz. Arch Microbiol 95:67–78

    Article  CAS  Google Scholar 

  • Lawrence JR, Delaquis PJ, Korber DR, Caldwell DE (1987) Behavior of Pseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments. Arch Ecol 14:1–14

    CAS  Google Scholar 

  • Lea FM, Desch CH (1936) The chemistry of cement and concrete. Edward Arnold, London, pp 16–17

    Google Scholar 

  • Lee JA (1948) Plastics. In: Uhlig HH (ed) The corrosion handbook. Wiley, New York, pp 359–365

    Google Scholar 

  • Lee SF, Forsberg CW, Gibbins LN (1985) Xylanolytic activity of Clostridium acetobutylicum. Appl Environ Microbiol 50:1068–1076

    PubMed  CAS  Google Scholar 

  • Lee SF, Forsberg CW, Rattray JB (1987a) Purification and characterization of two endoxylanases from Clostridium acetobutylicum. ATCC 824. Appl Environ Microbiol 53:644–650

    PubMed  CAS  Google Scholar 

  • Lee H, To RJB, Latta RK, Biely P, Schneider H (1987b) Some properties of extracellular acetylxylan esterase produced by the yeast Rhodotorula mucilaginosa. Appl Environ Microbiol 53:2831–2834

    PubMed  CAS  Google Scholar 

  • Lee W, Lewandowski Z, Okabe S, Characklis WG, Avci R (1993a) Corrosion of mild steel underneath aerobic biofilms containing sulfate-reducing bacteria, part I: at low dissolved oxygen concentration. Biofouling 7:197–216

    Article  CAS  Google Scholar 

  • Lee W, Lewandowski Z, Morrison M, Characklis WG, Avci R, Nielsen PH (1993b) Corrosion of mild steel underneath aerobic biofilms containing sulfate-reducing bacteria, part II: at high dissolved oxygen concentration. Biofouling 7:217–239

    Article  CAS  Google Scholar 

  • Lee Y-E, Lowe SE, Zeikus JG (1993c) Regulation and characterization of xylanolytic enzymes of Thermoanaerobacterium saccharolyticum B6A-RI. Appl Environ Microbiol 59:763–771

    PubMed  CAS  Google Scholar 

  • Lee W, Lewandowski Z, Nielsen PH, Hamilton WA (1995) Role of sulfate-reducing bacteria in corrosion of mild steel: a review. Biofouling 8:165–194

    Article  CAS  Google Scholar 

  • Lefebvre-Drouet E, Rousseau MF (1995) Dissolution de différents oxyhydroydes de fer par voie chimique et par voie biologique: importance des bactéries reductrices. Soil Biol Biochem 27:1041–1050

    Article  CAS  Google Scholar 

  • Lemaire J, Dabin P, Arnaud R (1992) Mechanisms of abiotic degradation of synthetic polymers. In: Vert M, Feijen J, Albertsson A, Scott G, Chiellini E (eds) Biodegradable polymers and plastics. Royal Society of Chemistry, Cambridge, pp 30–39

    Google Scholar 

  • Lemoigne M (1926) Produits de déshydration et de polymérisation de l'acide β-oxybutyric. Bull Soc Chim Biol (Paris) 8:770–782

    CAS  Google Scholar 

  • Lewandowski Z, Stoodley P, Altobelli S (1995) Experimental and conceptual studies on mass transport in biofilms. Water Sci Technol 31:153–162

    Google Scholar 

  • Leyden RN, Basiulis DI (1989) Adhesion and electrical insulation of thin polymeric coatings under saline exposure. In: Hanker JS, Giammara BL (eds) Biomedical materials and devices materials, vol 10. Research Society, Pittsburgh, pp 627–633

    Google Scholar 

  • L′Hostis E, Compère C, Festy D, Tribollet B, Deslouis C (1997) Characterization of biofilms formed on gold in natural seawater by oxygen diffusion analysis. Corrosion 53:4–10

    Article  Google Scholar 

  • Li D, Lu R (1990) Purification and properties of periplasmic hydrogenase from Desulfovibrio vulgaris D-2. Acta Microbiol Sinica 30:267–272

    CAS  Google Scholar 

  • Li D, Ma Y, Flanagan WF, Lichter BD, Wikswo JP Jr (1997) Detection of hidden corrosion of aircraft aluminum alloy by magnetometry using a superconducting quantum interference device. Corrosion 53:93–98

    Article  CAS  Google Scholar 

  • Liken GE (1981) Some perspectives of the major biogeochemical cycles: scope 17. Wiley, New York, pp 93–112

    Google Scholar 

  • Lin C, Olson BH (1995) Occurrence of cop-like copper resistance genes among bacteria isolated from a water distribution system. Can J Microbiol 41:642–646

    Article  CAS  Google Scholar 

  • Little B, Wagner P, Gerchakov SM, Walch M, Mitchell R (1986a) The involvement of a thermophilic bacterium in corrosion processes. Corrosion 42:533–536

    Article  CAS  Google Scholar 

  • Little BJ, Wagner P, Maki JS, Mitchell R (1986b) Factors influencing the adhesion of microorganisms to surfaces. J Adhesion 20:187–210

    Article  CAS  Google Scholar 

  • Little BJ, Depalma JR (1988) Marine biofouling. Treat Mat Sci Technol 28:89–119

    CAS  Google Scholar 

  • Little B, Wagner P, Characklis WG, Lee W (1990) Microbial corrosion. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 635–670

    Google Scholar 

  • Little BJ, Wagner P, Jones-Meehan J (1994) Sulfur isotopic fractionation in sulfide corrosion products as an indicator for microbiologically influenced corrosion (MIC). In: Kearns JR, Little BJ (eds) Microbiologically influenced corrosion testing. American Society for Testing and Materials, Philadelphia PA ASTM STP 1232, pp 180–187

    Google Scholar 

  • Liu X, Roe F, Jesaitis A, Lewandoski Z (1998) Resistance of biofilms to the catalase inhibitor 3-amino-1,2,4-triazole. Biotechnol Bioeng 59:156–162

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Stolz JF, Nord GL, Phillips EJ (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature (Lond) 330:252–254

    Article  CAS  Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287

    PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1994) Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl Environ Microbiol 60:726–728

    PubMed  CAS  Google Scholar 

  • Lü R, Liu Q, Xiao C, Bai S, Chen H, Wang F (1984) Study on microbicidal efficiency of chlorine dioxide for fouling harmful microbes in desalting water systems. Acta Microbiol Sinica 24:243–249

    Google Scholar 

  • Lü R, Liu Q, Zhang Y, Xiao C (1989) Studies on harmful microbes in recirculating cooling water system of oil refinery. Acta Microbiol Sinica 29:204–215

    Google Scholar 

  • Lusty CJ, Doudoroff M (1966) Poly-β-hydroxybutyrate depolymerases of Pseudomonas lemoignei. Proc Natl Acad Sci USA 56:960–965

    Article  PubMed  CAS  Google Scholar 

  • Lüthi E, Jasmat NB, Bergquist PL (1990a) Overproduction of an acetylxylan esterase from the extreme thermophile ‘Caldocellum saccharolyticum’ in Escherichia coli. Appl Microbiol Biotechnol 34:214–219

    Article  PubMed  Google Scholar 

  • Lüthi E, Love DR, McAnulty J, Wallace C, Caughey PA, Saul D, Bergquist PL (1990b) Cloning, sequence analysis, and expression of genes encoding xylan-degrading enzymes from the thermophile ‘Caldocellum saccharolyticum’. Appl Environ Microbiol 56:1017–1024

    PubMed  Google Scholar 

  • Luu WC, Kuo HS, Wu JK (1997) Hydrogen permeation through nickel-plated steels. Corrosion Sci 39:1051–1059

    Article  CAS  Google Scholar 

  • Lynch JL, Edyvean RGJ (1988) Biofouling in oilfield water systems – a review. Biofouling 1:147–162

    Article  Google Scholar 

  • MacDonald MJ, Hartley DL, Speedie MK (1985) Location of cellulolytic enzyme activity in the marine fungus Trichocladium achrasporum. Can J Microbiol 31:145–148

    Article  CAS  Google Scholar 

  • MacDonald RM (1986) Nitrification in soil: an introductory history. In: Prosser JI (ed) Nitrification. IRL Press, Oxford, pp 1–16

    Google Scholar 

  • MacKenzie CR, Bilous D, Schneider H, Johnsom KG (1987) Induction of cellulolytic and xylanolytic enzyme systems in Streptomyces spp. Appl Environ Microbiol 53:2853–2839

    Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2000) Brock biology of microorganisms, 9th edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Maki JS, Rittschof D, Schmidt AR, Snyder AS, Mitchell R (1989) Factors controlling attachment of bryozoan larvae: a comparison of bacterial films and unfilmed surfaces. Biol Bull 177:295–302

    Article  Google Scholar 

  • Maki JS, Little BJ, Wagner P, Mitchell R (1990a) Biofilm formation on metal surfaces in Antarctic waters. Biofouling 2:27–38

    Article  CAS  Google Scholar 

  • Maki JS, Rittschof D, Samuelson MO, Szewzyk U, Yule AB, Kjelleberg S, Costlow JD, Mitchell R (1990b) Effect of marine bacteria and their exopolymers on attachment of barnacle cypris larvae. Bull Marine Sci 46:499–511

    Google Scholar 

  • Mansfeld F, Shih H, Postyn A, Devinny J, Islander R, Chen CL (1990) Corrosion monitoring and control in concrete sewer pipes. National Association of Corrosion Engineers, Houston

    Google Scholar 

  • Mansfeld F (1994) Effectiveness of ion vapor-deposited aluminum as a primer for epoxy and urethane topcoats. Corrosion 50:609–612

    Article  CAS  Google Scholar 

  • Mansfeld F (1995) Use of electrochemical impedance spectroscopy for the study of corrosion by polymer coatings. J Appl Electrochem 25:187–202

    Google Scholar 

  • Margulis L (1981) The endosymbiotic theory. In: Margulis L (ed) Symbiosis in cell evolution. W. H. Freeman, San Francisco, pp 1–14

    Google Scholar 

  • Marshall KC, Stout R, Mitchell R (1971) Mechanism of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68:337–348

    Article  CAS  Google Scholar 

  • Marshall KC (1976) Solid-liquid and solid-gas interfaces. In: Marshall KC (ed) Interfaces in microbial ecology. Harvard University Press, Cambridge, pp 27–52

    Google Scholar 

  • Marshall KC (1980) Adsorption of microorganisms to soils and sediments. In: Bitton G, Marshall KC (eds) Adsorption of microorganisms to surfaces. Wiley, New York, pp 317–329

    Google Scholar 

  • Marshall KC (1992) Biofilms: an overview of bacterial adhesion, activity, and control at surfaces. ASM News 58:202–207

    Google Scholar 

  • Martrhamuthu S, Rajagopal G, Sathianarayannan S, Eashwar M, Balakrishnan K (1995) A photoelectrochemical approach to the ennoblement process: proposal of an adsorbed inhibitor theory. Biofouling 8:223–232

    Article  Google Scholar 

  • Mas-Castellà J, Urmeneta J, Lafuente R, Navarrete A, Guerrero R (1995) Biodegradation of poly-β-hydroxyalkanoates in anaerobic sediments. Int Biodeter Biodegr 35:155–174

    Article  Google Scholar 

  • Matamala G, Smeltzer W, Droguett G (1994) Use of tannin anticorrosive reaction primer to improve traditional coating systems. Corrosion 4:270–275

    Article  Google Scholar 

  • Matis KA, Zouboulis AI, Grioriadou AA, Lazaridis NK, Ekateriniadou LV (1996) Metal biosorption-flotation, application to cadmium removal. Appl Microbiol Biotechnol 45:569–573

    PubMed  CAS  Google Scholar 

  • Mattila K, Carpen L, Hakkarainen T, Salkinoja-Salonen MS (1997) Biofilm development during ennoblement of stainless steel in Baltic Sea water: a microscopic study. Int Biodeter Biodegr 40:1–10

    Article  Google Scholar 

  • May E, Lewis FJ, Pereira S, Taylor S, Seaward MRD (1993) Microbial deterioration of building stone – a review. Biodeter Abstr 7:109–123

    Google Scholar 

  • Mayr E (1998) Two empires or three? Proc Natl Acad Sci USA 95:9720–9723

    Article  PubMed  CAS  Google Scholar 

  • McCain JW, Mirocha CJ (1995) Screening computer diskettes and other magnetic media for susceptibility to fungal colonization. Int Biodeter Biodegr 33:255–268

    Article  Google Scholar 

  • McFeters GA (1991) Disinfection susceptibility of waterborne Pseudomonads and Legionellae under simulated space vehicle conditions. Intersociety Conference on Environmental Systems San Francisco CA SAE Technical Paper 911404, ICE

    Google Scholar 

  • McFeters GA, Yu FP, Pyle BH, Stewart PS (1995) Physiological methods to study biofilm disinfection. J Ind Microbiol 15:333–338

    Article  CAS  Google Scholar 

  • McLean RJC, Nickel JC, Olson ME (1995) Biofilm associated urinary tract infections. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms. Cambridge University Press, Cambridge, pp 261–273

    Chapter  Google Scholar 

  • McLean RJC, Whiteley M, Stickler DJ, Fuqua WC (1997) Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol Lett 154:259–263

    Article  PubMed  CAS  Google Scholar 

  • Mergaert J, Webb A, Anderson C, Wouters A, Swings J (1993) Microbial-degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in soils. Appl Environ Microbiol 59:3233–3238

    PubMed  CAS  Google Scholar 

  • Mergeay M (1991) Towards an understanding of the genetics of bacterial metal resistance. Trends Biotechnol 9:17–24

    Article  PubMed  CAS  Google Scholar 

  • Meshkov D (1994) The influence of spaceflight conditions on sensitization of men to bacterial and chemical allergens. 45th Congress of the International Astronautical Confederation Congress, Jerusalem Israel IAF/IAA-94-G.1.125

    Google Scholar 

  • Meyer L (1864) Chemische untersuchungen der thermen zu landeck in der grafschaft glatz. J Prakt Chem 91:1–15

    Article  Google Scholar 

  • Milde K, Sand W, Wolff W, Bock E (1983) Thiobacilli of the concrete walls of the Hamburg sewer system. J Gen Microbiol 129:1327–1333

    Google Scholar 

  • Millard SG, Gowers KR, Bungey JH (1995) Galvanostatic pulse techniques: a rapid method of assessing corrosion rates of steel in concrete structure. NACE International Corrosion, Houston

    Google Scholar 

  • Miller JDA (1970) Microbial aspects of metallurgy. Elsevier, New York, pp 61–105

    Google Scholar 

  • Mills AL, Powelson DK (1996) Bacterial interactions with surfaces in soils. In: Fletcher M (ed) Bacterial adhesion: molecular and ecological diversity. Wiley-Liss, New York, pp 25–57

    Google Scholar 

  • Milstein O, Gersonde R, Huttermann A, Chen M-J, Meister JJ (1992) Fungal biodegradation of lignopolystyrene graft copolymers. Appl Environ Microbiol 58:3225–3232

    PubMed  CAS  Google Scholar 

  • Mitchell R, Maki JS (1989) Microbial surface films and their influence on larval settlement and metamorphosis in the marine environment. In: Thompson MF, Sarojini R, Nagabhushanam R (eds) Marine biodeterioration: advanced techniques applicable to the Indian Ocean. Oxford & IBH, New Delhi, pp 489–497

    Google Scholar 

  • Mitchell R, Gu JD, Roman M, Soulkup S (1996) Hazards to space missions from microbial biofilms. In: Sand W (ed) Biodeterioration and biodegradation. VCH Verlagsgesellschaft, Frankfurt, DECHEMA Monographs, vol 133, pp 3–16

    Google Scholar 

  • Mitchell R, Gu J-D (2000) Changes in the biofilm microflora of limestone caused by atmospheric pollutants. Int Biodeter Biodegr 46:299–303

    Article  CAS  Google Scholar 

  • Mittelman MW, Geesey G (1985) Copper-binding characteristics of exopolymers from a freshwater-sediment bacterium. Appl Environ Microbiol 49:846–851

    PubMed  CAS  Google Scholar 

  • Mittelman MW (1995) Biofilm development in purified water systems. In: Lappin-Scott HM, Costerton JW (eds) Microbial biofilms. Cambridge University Press, Cambridge, pp 133–147

    Chapter  Google Scholar 

  • Mittelman MW, Danko JC (1995) Corrosion of a concrete dam structure: evidence of microbially influenced corrosion activity. In: Angell P et al (eds) 1995 International conference on microbial influenced corrosion. National Association of Corrosion Engineers, Houston TX, pp 15/1–15/7

    Google Scholar 

  • Mittelman MW (1996) Adhesion to biomaterials. In: Fletcher M (ed) Bacterial adhesion: molecular and ecological diversity. Wiley-Liss, New York, pp 89–127

    Google Scholar 

  • Mitton B, Ford TE, LaPointe E, Mitchell R (1993) Biodegradation of complex polymeric materials. National Association of Corrosion Engineers, Houston

    Google Scholar 

  • Mitton DB, Latanison RM, Bellucci F (1996) The effects of post-cure annealing on the protective properties of polyimides on chromium substrates. J Electrochem Soc 143:3307–3316

    Article  CAS  Google Scholar 

  • Mitton DB, Toshima S, Latanison RM, Bellucci F, Ford TE, Gu J-D, Mitchell R (1998) Biodegradation of polymer-coated metallic substrates. In: Bierwagen GP (ed) Organic coatings for corrosion control, vol 689. ACS Symp. Ser, ACS Washington, DC, pp 211–222

    Google Scholar 

  • Moat AG, Foster JW (1988) Growth and its regulation. In: Moat AG, Foster JW, Spector MP, Sector MP (eds) Microbial physiology, 2nd edn. Wiley, New York, pp 523–578

    Google Scholar 

  • Moore L, Postle M (1994) Risk-benefit analysis and case study on tributyl tin. Int Biodeter Biodegr 34:401–412

    Article  CAS  Google Scholar 

  • Moosavi AN, Dawson JL, King RA (1986) The effect of sulfate-reducing bacteria on the corrosion of reinforced concrete. In: Dexter SC (ed) Biologically induced corrosion: proceedings of the international conference on biologically induced corrosion. National Association of Corrosion Engineers, Houston, pp 291–308

    Google Scholar 

  • Morton RL, Yanko WA, Graham DW, Arnold RG (1991) Relationships between metal concentrations and crown corrosion in Los Angeles County sewers. Res J WPCF 63:779–798

    Google Scholar 

  • Murray FES, Mitchell R, Ford T (1993) In: Experimental methods for the study of microbial mediated corrosion. NACE International, Houston

    Google Scholar 

  • Myers T (1988) Failing the test: germicides or use dilution methodology? ASM News 54:19–21

    Google Scholar 

  • Nakagawa H, Akihawa S, Suenaga T, Taniguchi Y, Yoda K (1993) Fiber reinforced concrete: developments and application to buildings. Adv Composite Mat 3:123–131

    Article  Google Scholar 

  • Nakajima-Kambe T, Onuma F, Kimpara N, Nakahara T (1995) Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and energy source. FEMS Microbiol Lett 129:39–42

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi K, Marui M, Yasui T (1992) Comparison of xylan and methyl β-xyloside-induced xylanases from Streptomyces sp. J Ferment Bioeng 74:392–394

    Article  CAS  Google Scholar 

  • Nakayama K, Saito T, Fukui Y, Shirakura Y, Tomita K (1985) Purification and properties of extracellular poly(3-hydroxybutyrate) depolymerases from Pseudomonas lemoignei. Biochim Biophys Acta 827:63–72

    Article  PubMed  CAS  Google Scholar 

  • Narayan R (1993) Biodegradation of polymeric materials (anthropogenic macromolecules) during composting. In: Hoitink HAJ, Keener HM (eds) Science and engineering of composting: design, environmental, microbiological and utilization aspects. Renaissance, Worthington, pp 339–362

    Google Scholar 

  • Nefedov Y, Novikova ND, Surovezhin IN (1988) Products of biodegradation of polymers as a factor in the possible pollution of the air of hermetically sealed environments with toxic substances (in Russian) Kosmicheskaya Biologiya i Aviakosmicheskaya Medistina 22:67–71

    Google Scholar 

  • Neu T (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166

    PubMed  CAS  Google Scholar 

  • Nieboer E, Gibson BL, Oxman AD, Kramer JR (1995) Health effects of aluminum: a critical review with emphasis on aluminum in drinking water. Environ Rev 3:29–81

    Article  CAS  Google Scholar 

  • Nielsen PH, Lee W, Lewandowshi Z, Morison M, Characklis WG (1993) Corrosion of mild steel in an alternating oxic and anoxic biofilm system. Biofouling 7:267–284

    Article  Google Scholar 

  • Novikova ND, Zalogoyev SN (1985) Formation of volatile substances during polymer destruction by Pseudomonas aeruginosa (in Russian) Kosmicheskaya Biologiya i Aviakosmicheskaya Medistina 19:74–76

    Google Scholar 

  • Novikova ND, Orlova MI, Dyachenko MB (1986) Reproductive capacity of microflora on polymers used in sealed environments (in Russian) Kosmicheskaya Biologiya i Aviakosmicheskaya Medistina 20:71–73

    Google Scholar 

  • Nozhevnikova AN, Kotsyurbenko OR, Simankova MV (1994) Acetogenesis. In: Drake HL (ed) Acetogenesis at low temperature. Chapman and Hall, New York, pp 416–431

    Google Scholar 

  • NRC (National Research Council) (1987) Agenda for advancing electrochemical corrosion science and technology. National Academy Press, Washington, DC, Publication NMAB438-2 87–96

    Google Scholar 

  • Odian G (1991) Reactions of polymers. In: Odian G (ed) Principles of polymerization, 3rd edn. Wiley, New York, pp 691–745

    Google Scholar 

  • Odom JM (1993) Industrial and environmental activities of sulfate-reducing bacteria. In: Odom JM, Singleton R Jr (eds) The sulfate-reducing bacteria: contemporary perspectives. Springer, New York, pp 189–210

    Chapter  Google Scholar 

  • Odom JM, Singleton R Jr (1993) The sulfate-reducing bacteria: contemporary perspectives. Springer, New York, p 289

    Book  Google Scholar 

  • Olesen BH, Avci R, Lewandowski Z (1998) Ennoblement of stainless steel studied by X-ray photoelectron spectroscopy. NACE International, Houston TX Corrosion

    Google Scholar 

  • Olmstead WM, Hamlin H (1900) Converting portions of the Los Angles outfall sewer into a septic tank. Engin 1199 News 44:317–318

    Google Scholar 

  • Ortega-Calvo JJ, Hernandez-Marine M, Saiz-Jimenez C (1991) Biodeterioration of building materials by cyanobacteria and algae. Int Biodeter 28:165–185

    Article  Google Scholar 

  • Ortega-Calvo JJ, Sanchez-Castillo PM, Hernandez-Marine M, Saiz-Jimenez C (1993) Isolation and characterization of epilithic chlorophytes and cyanobacteria from two Spanish cathedrals (Salamanca and Toledo). Nova Hedwigia 57:239–253

    Google Scholar 

  • Ortega-Calvo JJ, Arino X, Hernandez-Marine M, Saiz-Jimenez C (1995) Factors affecting the weathering and colonization of monuments by phototrophic microorganisms. Sci Total Environ 167:329–341

    Article  CAS  Google Scholar 

  • Ortega-Morales O, Hernandez-Duque G, Borges-Gomez L, Guezennec J (1999) Characterization of epilithic microbial communities associated with Mayan stone monuments in Yucatan, Mexico. Geomicrobiol J 16:221–232

    Article  CAS  Google Scholar 

  • Osswald P, Courtes R, Bauda P, Block JC, Bryers JD, Sunde E (1995) Xenobiotic biodegradation test using attached bacteria in synthetic seawater. Ecotoxicol Environ Safety 31:211–217

    Article  PubMed  CAS  Google Scholar 

  • O′Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Ann Rev Microbiol 54:49–79

    Article  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  • Padival NA, Weiss JS, Arnold RG (1995) Control of Thiobacillus by means of microbial competition: Implications for corrosion of concrete sewers. Water Environ Res 67:201–205

    Article  CAS  Google Scholar 

  • Paradies HH, Haenßel I, Fisher W, Wagner D (1990) Microbial induced corrosion of copper pipes. New York, INCRA Report No. 444 16

    Google Scholar 

  • Paradies HH (1995) Chemical and physical aspects of metal biofilms. In: Gaylarde CC, Videla HA (eds) Bioextraction and biodeterioration. Cambridge University Press, Cambridge, pp 197–269

    Google Scholar 

  • Parikh M, Gross RA, McCarthy SP (1993) The effect of crystalline morphology on enzymatic degradation kinetics. In: Kaplan D, Thomas E, Ching C (eds) Fundamentals of biodegradable materials and packaging. Technomic, Lancaster, pp 159–170

    Google Scholar 

  • Parker CD (1945a) The corrosion of concrete. 1: the isolation of a species of bacterium associated with the corrosion of concrete exposed to atmospheres containing hydrogen sulphide. Aust J Exp Biol Med Sci 23:81–90

    Article  CAS  Google Scholar 

  • Parker CD (1945b) The corrosion of concrete. 2: the function of Thiobacillus concretivorus (nov. spec.) in the corrosion of concrete exposed to atmospheres containing hydrogen sulphide. Aust J Exp Biol Med Sci 23:91–98

    Article  CAS  Google Scholar 

  • Parker CD (1947) Species of sulfur bacteria associated with the corrosion of concrete. Nature (Lond) 159:439

    Google Scholar 

  • Parker CD, Prisk A (1953) The oxidation of inorganic compounds of sulphur by various sulphur bacteria. J Gen Microbiol 8:344–364

    Article  PubMed  CAS  Google Scholar 

  • Parker CD, Jackson D (1965) The microbial flora of concrete surfaces. Hydrogen Sulphide Corrosion of Concrete Sewers Melbourne and Metropolitan Board of Works, Melbourne, Australia Technical Paper No. A8, Part 6, pp 1–29

    Google Scholar 

  • Pedersen K (1996) Investigations of subterranean bacteria in deep crystalline bedrock and their importance for the disposal of nuclear waste. Can J Microbiol 42:382–391

    Article  Google Scholar 

  • Pendyala J, Avci R, Geesey GG, Stoodley P, Hamilton M, Harkin G (1996) Chemical effect of biofilm colonization on 304 stainless steel. J Vac Sci Technol A14:1955–1760

    Google Scholar 

  • Peng C-G, Park JK (1994) Principal factors affecting microbiologically influenced corrosion of carbon steel. Corrosion 50:669–675

    Article  CAS  Google Scholar 

  • Pierson DL, Mishra SK (1992) Microbiological challenges of space habitation. 43rd congress of the international astronautical confederation congress, Washington, DC

    Google Scholar 

  • Pierson BK, Parenteau MN (2000) Phototrophs in high iron microbial mats: microstructure of mats in iron-depositing hot springs. FEMS Microbiol Ecol 32:181–196

    Article  PubMed  CAS  Google Scholar 

  • Piervittori R, Salvadori O, Laccisaglia A (1994) Literature on lichens and biodeterioration of stonework I. Lichenologist 26:171–192

    Article  Google Scholar 

  • Pitt CG (1992) Non-microbial degradation of polyesters: mechanisms and modifications. In: Vert M, Feijen J, Albertsson A, Scott G, Chiellini E (eds) Biodegradable polymers and plastics. Royal Society for Chemistry/Redwood Press, Melksham, pp 7–17

    Google Scholar 

  • Pometto AL III, Lee B, Johnson KE (1992) Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species. Appl Environ Microbiol 58:731–733

    PubMed  CAS  Google Scholar 

  • Pometto AL III, Johnson KE, Kim M (1993) Pure-culture and enzymatic assay for starch-polyethylene degradable plastic biodegradation with Streptomyces species. J Environ Polym Degr 1:213–221

    Article  CAS  Google Scholar 

  • Pope DH, Duquette D, Wayner Jr. PC, Johannes AH (1989) In: Microbiologically influenced corrosion: a state-of-the-art review, 2nd edn. National Association of Corrosion Engineers, Houston TX MTI Publication No. 13 4 1–3

    Google Scholar 

  • Postgate JR (1984) The sulfate-reducing bacteria, 2nd edn. Cambridge University Press, New York, pp 132–152

    Google Scholar 

  • Potekhina JS, Sherisheva NG, Povetkina LP, Pospelov AP, Rakitina TA, Warnecke F, Gottschalk G (1999) Role of microorganisms in corrosion inhibition of metals in aquatic habitats. Appl Microbiol Biotechnol 52:639–646

    Article  CAS  Google Scholar 

  • Power K, Marshall KC (1988) Cellular growth and reproduction of marine bacteria on surface-bound substrate. Biofouling 1:163–174

    Article  Google Scholar 

  • Prieto B, Rivas T, Silva B, Carballal R, Lopez de Silanes ME (1995) Colonization by lichens of granite dolments in Galicia (NW Spain). Int Biodeter Biodegr 34:47–60

    Article  Google Scholar 

  • Pyle BH, Broadaway SC, McFeters GA (1992) Efficacy of copper and silver ions with iodine in the inactivation of Pseudomonas cepacia. J Appl Bacteriol 72:71–79

    PubMed  CAS  Google Scholar 

  • Raychaudhuri S, Sutphin PD, Chang JT, Altman RB (2001) Basic microarray analysis: grouping and feature reduction. Trends Biotechnol 19:189–193

    Article  PubMed  CAS  Google Scholar 

  • Reese ET (1957) Biological degradation of cellulose derivatives. Ind Engin Chem 49:89–93

    Article  CAS  Google Scholar 

  • Reinsel MA, Sears JT, Stewart PS, Mclnerney MJ (1996) Control of microbial souring by nitrate, nitrite or glutaraldehyde injection in a sandstone column. J Ind Microbiol 17:128–136

    Article  CAS  Google Scholar 

  • Rethke D (1994) Testing of Russian ECLSS-Sabatier and potable water processor Intersociety Conference on Environmental Systems Friedrichschafen Germany SAE Technical Paper 941252, ICES

    Google Scholar 

  • Reynolds TB, Fink GR (2001) Baker’s yeast, a model for fungal biofilm formation. Science 291:878–881

    Article  PubMed  CAS  Google Scholar 

  • Rijnaarts HHM, Norde W, Bouwer EJ, Lyklema J, Zehnder AJB (1993) Bacterial adhesion under static and dynamic conditions. Appl Environ Microbiol 59:3255–3265

    PubMed  CAS  Google Scholar 

  • Rittman BE (1993) The significance of biofilms in porous media. Water Res Rev 29:2195–2202

    Article  Google Scholar 

  • Rittschof D, Maki J, Mitchell R, Costlow JD (1986) Ion and neuropharmacological studies of barnacle settlement Netherlands. J Sea Res 20:269–275

    Article  CAS  Google Scholar 

  • Roe FL, Lewandowshi Z, Funk T (1996) Simulation microbiologically influenced corrosion by depositing extracellular biopolymers on mild steel surfaces. Corrosion 52:744–752

    Article  CAS  Google Scholar 

  • Rogers J, Dowsett AB, Dennis PJ, Lee JV, Keevil CW (1994) Influence of plumbing materials on biofilm formation and growth of Legionella pneumophila in potable water systems. Appl Environ Microbiol 60:1842–1851

    PubMed  CAS  Google Scholar 

  • Rölleke S, Witte A, Wanner G, Lubitz W (1998) Medieval wall paintings – a habitat for archaea: identification of archaea by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified gene fragments coding for 16S rRNA in a medieval wall painting. Int Biodeter Biodegr 41:85–92

    Article  Google Scholar 

  • Ross J (1994) An aquatic invader is running amok in U.S. waterways. Smithsonian 24:40–51

    Google Scholar 

  • Rossmoore HW, Rossmoore LA (1993) MIC in metalworking processes and hydraulic systems. In: Kobrin G (ed) A practical manual on microbiologically influenced corrosion. NACE International, Houston, pp 31–40

    Google Scholar 

  • Saito H, Miyata Y, Takazawa H, Takai K, Yamauchi G (1995) Corrosion rate measurements of steel in carbonated concrete. NACE International, Houston TX, Corrosion

    Google Scholar 

  • Saito T, Suzuki K, Yamamoto J, Fukui T, Miwa K, Tomita K, Nakanishi S, Odani S, Suzuki J-I, Ishikawa K (1989) Cloning, nucleotide sequence, and expression in Escherichia coli of the gene for poly-3-hydroxybutyrate depolymerase from Alcaligenes faecalis. J Bacteriol 171:184–189

    PubMed  CAS  Google Scholar 

  • Saiz-Jimenez C (1995) Deposition of anthropogenic compounds on monuments and their effect on airborne microorganisms. Aerobiologia 11:161–175

    Article  Google Scholar 

  • Saiz-Jimenez C (1997) Biodeterioration vs biodegradation: the role of microorganisms in the removal of pollutants deposited on historic buildings. Int Biodeter Biodegr 40:225–232

    Article  CAS  Google Scholar 

  • Sakaguchi T, Burgess JG, Matsunaga T (1993) Magnetite formation by a sulphate-reducing bacterium. Nature (Lond) 253:47–49

    Article  Google Scholar 

  • Salama N, Guillemin K, McDaniel TK, Sherlock G, Tompkins L, Falkow S (2000) A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc Natl Acad Sci USA 97:14668–14673

    Article  PubMed  CAS  Google Scholar 

  • Sánchez A, Ballester A, Blázquez ML, González F, Muñoz J, Hammaini A (1999) Biosorption of copper and zinc by Cymodocea nodosa. FEMS Microbiol Rev 23:527–536

    PubMed  Google Scholar 

  • Sand W, Milde K, Bock E (1983) Simulation of concrete corrosion in a strictly controlled H2S breeding chamber. In: Rossi G, Torma AE (eds) Recent progress in biohydrometallurgy associazione mineraria. Sarda, Italy, pp 667–677

    Google Scholar 

  • Sand W, Bock E (1984) Concrete corrosion in the Hamburg sewer system. Environ Technol Lett 5:517–528

    Article  CAS  Google Scholar 

  • Sand W (1987) Importance of hydrogen sulfide, thiosulfate and methylmercaptan for growth of thiobacilli during simulation of concrete corrosion. Appl Environ Microbiol 53:1645–1648

    PubMed  CAS  Google Scholar 

  • Sand W, Bock E, White DC (1987) Biotest system for rapid evaluation of concrete resistance to sulfur-oxidizing bacteria. Mat Perf 26:14–17

    CAS  Google Scholar 

  • Sand W, Ahlers B, Bock E (1991) The impact of microorganisms –– especially nitric acid producing bacteria – on the deterioration of natural stones. In: Baer NS, Sabbioni C, Sors AI (eds) Science, technology and European cultural heritage. Butterworth-Heinemann, Oxford, pp 481–484

    Google Scholar 

  • Sand W (1997) Microbial mechanisms of deterioration of inorganic substrates – a general mechanistic overview. Int Biodeter Biodegr 40:183–190

    Article  CAS  Google Scholar 

  • Sandaa R-A, Enger O, Torsvik V (1999) Abundance and diversity of Archaea in heavy-metal-contaminated soils. Appl Environ Microbiol 65:3293–3297

    PubMed  CAS  Google Scholar 

  • Sanders PF, Hamilton WA (1986) Biological and corrosion activities of sulphate-reducing bacteria in industrial process plant. In: Dexter SC (ed) Biologically induced corrosion: proceedings of the international conference on biologically induced corrosion. National Association of Corrosion Engineers, Houston, pp 47–68

    Google Scholar 

  • Santini JM, Sly LI, Schnagi RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92–97

    Article  PubMed  CAS  Google Scholar 

  • Scamans GM, Hunter JA, Holroyd NJH (1989) A surface-engineering approach to the corrosion aluminum. Treat Mater Sci Technol 31:485–500

    Article  CAS  Google Scholar 

  • Schembri MA, Kjærgaard K, Klemm P (1999) Bioaccumulation of heavy metals by fimbrial designer adhesins. FEMS Microbiol Lett 170:363–371

    Article  PubMed  CAS  Google Scholar 

  • Schink B, Stieb M (1983) Fermentative degradation of polyethylene glycol by a strictly anaerobic, Gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov. Appl Environ Microbiol 45:1905–1913

    PubMed  CAS  Google Scholar 

  • Schmidt EL (1982) Nitrification in soil. In: Stevenson FJ (ed) Nitrogen in agricultural soils. Soil Science Society of America, vol 22, Agronomy Monograph. Madison, pp 253–288

    Google Scholar 

  • Schmidt R (1997) Monte Carlo simulation of bioadhesion. Int Biodeter Biodegr 40:29–36

    Article  Google Scholar 

  • Schmidtt CR (1986) Anomalous microbiological tuberculation and aluminum pitting corrosion – case histories. In: Dexter SC (ed) Biologically induced corrosion: proceedings of the international conference on biologically induced corrosion. National Association of Corrosion Engineers, Houston TX, pp 69–75

    Google Scholar 

  • Schüler D, Frankel RB (1999) Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Microbiol Biotechnol 52:464–473

    Article  PubMed  Google Scholar 

  • Schultzen-Lam S, Harauz G, Beveridge TJ (1992) Participation of a cyanobacterial S layer in fine-grain mineral formation. J Bacteriol 174:7971–7981

    Google Scholar 

  • Selwitz CM (1992) The use of epoxy resins in field projects for stone stabilization. Mat Res Soc Symp Proc 267:925–934

    Article  CAS  Google Scholar 

  • Sequeira CAC, Tiller AK (1988) Microbial corrosion, vol 1. Elsevier Science, London/New York, pp 34–36

    Google Scholar 

  • Severini F, Gallo R, Ipsale S (1988) Environmental degradation of polypropylene. Polym Degr Stab 22:185–194

    Article  CAS  Google Scholar 

  • Sharp RR, Bryers JB, Jones WG, Shields MS (1998) Activity and stability of a recombinant plasmid-borne TCE degradative pathway in suspended cultures. Biotechnol Bioeng 57:287–296

    Article  PubMed  CAS  Google Scholar 

  • Siedlarek H, Wagner D, Fischer WR, Paradies HH (1994) Microbiologically influenced corrosion of copper: the ionic transport properties of biopolymers. Corrosion Sci 36:1751–1763

    Article  CAS  Google Scholar 

  • Sneath PHA, Mair NS, Sharpe ME, Holt JG (1986) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, http://www.cme.msu.edu/bergeys

  • Sneider RP, Chadwick BR, Pembrey R, Jankowski J, Acworth I (1994) Retention of the Gram-negative bacterium SW8 on surfaces under conditions relevant to the subsurface environment: effects of conditioning films and substratum nature. FEMS Microbiol Ecol 14:243–254

    Article  Google Scholar 

  • Solomin GI (1985) Problem of combined toxicological and hygienic evaluation of polymer construction materials (in Russian) Kosmicheskaya Biologiya i Aviakosmicheskaya Medistina 19:4–11

    Google Scholar 

  • Somlev V, Tishkov S (1994) Anaerobic corrosion and bacterial sulfate reduction: application for the purification of industrial wastewater. Geomicrobiology 12:53–60

    Article  CAS  Google Scholar 

  • Sonne-Hansen J, Mathrani IM, Ahring BK (1993) Xylanolytic anaerobic thermophiles from Icelandic hot-springs. Appl Microbiol Biotechnol 38:537–541

    Article  CAS  Google Scholar 

  • Srinivasan R, Stewart PS, Griebe T, Chen C-I (1995) Biofilm parameters influencing biocide efficacy. Biotechnol Bioeng 46:553–560

    Article  PubMed  CAS  Google Scholar 

  • Staley JT, Bryant MP, Pfenning N, Holt JG (1989) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, http://www.cme.msu.edu/bergeys

  • Starkey RL (1986) Anaerobic corrosion – perspectives about causes. In: Dexter SC (eds) Biologically induced corrosion: proceedings of the international conference on biologically induced corrosion. National Association of Corrosion Engineers, Houston TX, pp 3–7

    Google Scholar 

  • Stenbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials: novel materials from biological sources. Macmillan, New York, pp 127–213

    Google Scholar 

  • Stern RV, Howard GT (2000) The polyester polyurethanase gene (pue A) from Pseudomonas chlororaphis encodes a lipase. FEMS Microbiol Lett 185:163–168

    Article  PubMed  CAS  Google Scholar 

  • Sternberg D, Vigayakumar P, Reese ET (1977) β-glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Can J Microbiol 23:139–147

    Article  PubMed  CAS  Google Scholar 

  • Stewart PS (1996) Theoretical aspects of antibiotic diffusion into microbial biofilms. Antmicrob Agents Chemother 40:2517–2522

    CAS  Google Scholar 

  • Stewart PS, Hamilton MA, Goldstein BR, Schneider BT (1996) Modeling biocide action against biofilms. Biotechnol Bioeng 49:445–455

    Article  PubMed  CAS  Google Scholar 

  • Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627

    Article  PubMed  CAS  Google Scholar 

  • Stoodley P, DeBeer D, Lappin-Scott HM (1997) Influence of electric fields and pH on biofilm structure as related to the bioelectric effect. Antmicrob Agents Chemother 41:1876–1879

    CAS  Google Scholar 

  • Stranger-Joannesen M, Sorheim R, Zanotti D, Bichi A (1993) The ESA-LPTO simulation campaigns: microbial contamination of the closed manned habitats. 44th congress of the international astronautical confederation congress, IAF/IAA-93-G.4.162 Graz Austria

    Google Scholar 

  • Stroes-Gascoyne S, Pedersen K, Daumas S, Hamon CJ, Haveman SA, Delaney TL, Ekendahl S, Jahromi N, Arlinger J, Hallbeck L, Dekeyser K (1996) Microbial analysis of the buffer/container experiment at AECL’s Underground Research Laboratory Whiteshell Laboratories, Atomic Energy of Canada Ltd Pinawa Manitoba, Canada AECL-11436, pp 1–219

    Google Scholar 

  • Stuart ES, Lenz RW, Fuller RC (1995) The ordered macromolecular surface of polyester inclusion bodies in Pseudomonas oleovorans. Can J Microbiol 41(Suppl):84–93

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Oxidation and reduction, equilibria and microbial mediation. In: Stumm W, Morgan JJ (eds) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York, pp 425–515

    Google Scholar 

  • Suci PA, Vrany JD, Mittelamn MW (1998) Investigation of interactions between antimicrobial agents and bacterial biofilms using attenuated total reflection Fourier transform infrared spectroscopy. Biomaterials 19:327–339

    Article  PubMed  CAS  Google Scholar 

  • Sugio T, Hirayama K, Inagaki K, Tanaka H, Tano T (1992) Molybdenum oxidation by Thiobacillus ferrooxidans. Appl Environ Microbiol 58:1768–1771

    PubMed  CAS  Google Scholar 

  • Sugio T, Tsujita Y, Katagiri T, Inagaki K, Tano T (1988) Reduction of Mo6+ with elemental sulfur by Thiobacillus ferrooxidans. J Bacteriol 170:5956–5959

    PubMed  CAS  Google Scholar 

  • Sullivan BK, Oviatt CA, Klein-MacPhee G (1993) Fate and effects of a starch-based biodegradable plastic substitute in the marine environment. In: Kaplan D, Thomas E, Ching C (eds) Fundamentals of biodegradable materials and packaging. Technomic, Lancaste, pp 281–296

    Google Scholar 

  • Sunesson A, Vaes WHJ, Nilsson C, Blomouist G, Andersson B, Carlson R (1995) Identification of volatile metabolites from five fungal species cultivated on two media. Appl Environ Microbiol 61:2911–2918

    PubMed  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposer organisms. Decomposition in terrestrial ecosystems: studies in ecology, vol 5. Blackwell Scientific, London, pp 66–117

    Google Scholar 

  • Szycher M (1989) Medical-grade polyurethanes: their crucial role in artificial hearts. In: Hanker JS, Giammara BL (eds) Biomedical materials and devices materials, vol 110. Research Society, Pittsburgh, pp 41–50

    Google Scholar 

  • Tall BD, Williams HN, George KS, Gray RT, Walch M (1995) Bacterial succession within a biofilm in water supply lines of dental air-water syringes. Can J Microbiol 41:647–654

    Article  PubMed  CAS  Google Scholar 

  • Tanio T, Fukui T, Saito T, Tomita K, Kaiho T, Masamune S (1982) An extracellular poly(β-hydroxybutyrate) depolymerase from Alcaligenes faecalis. Eur J Biochem 124:71–77

    Article  PubMed  CAS  Google Scholar 

  • Tatnall RE (1986) Experimental methods in biocorrosion. In: Dexter SC (ed) Biologically induced corrosion: proceedings of the international conference on biologically induced corrosion. National Association of Corrosion Engineers, Houston TX, pp 246–253

    Google Scholar 

  • Tayler S, May E (1991) The seasonality of heterotrophic bacteria on sandstones of ancient monuments. Int Biodeter 28:49–64

    Article  Google Scholar 

  • Tayler S, May E (1994) Detection of specific bacteria on stone using an enzyme-linked immunosorbent assay. Int Biodeter Biodegr 33:155–167

    Article  Google Scholar 

  • Tebo BM, Obraztsova AY (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV) and Fe(III) as electron acceptors. FEMS Microbiol Lett 162:193–198

    Article  CAS  Google Scholar 

  • Thorp KEG, Crasto AS, Gu JD, Mitchell R (1994) Biodegradation of composite materials. In: Naguy T (ed) Proceedings of the tri-service conference on corrosion. US Government Printing House, Washington, DC, pp 303–314

    Google Scholar 

  • Thorp KEG, Crasto AS, Gu JD, Mitchell R (1997) Contribution of microorganisms to corrosion. National Association of Corrosion Engineers, Houston TX Corrosion

    Google Scholar 

  • Tiano P (1993) Biodeterioration of stone monuments: a critical review. In: Garg KL, Garg N, Mukerji KG (eds) Recent advances in biodeterioration and biodegradation. Naya Prokash, Calcutta, pp 301–321

    Google Scholar 

  • Tiano P, Accolla P, Tomaselli L (1995) Phototrophic biodeteriogens on lithoid surfaces: an ecological study. Microb Ecol 29:299–309

    Article  Google Scholar 

  • Tilstra L, Johnsonbaugh D (1993) A test method to determine rapidly if polymers are biodegradable. J Environ Polym Degr 1:247–255

    Article  CAS  Google Scholar 

  • Tomaselli L, Lamenti G, Bosco M, Tiano P (2000) Biodiversity of photosynthetic micro-organisms dwelling on stone monuments. Int Biodeter Biodegr 46:251–258

    Article  Google Scholar 

  • Tomei FA, Maki JS, Mitchell R (1985) Interactions in syntrophic associations of endospore-forming, butyrate-degrading bacteria and H2-consuming bacteria. Appl Environ Microbiol 50:1244–1250

    PubMed  CAS  Google Scholar 

  • Torre MAD, Gómez-Alarcón G, Melgarejo P, Lorenzo J (1991) Fungal colonization of the Salamanca cathedral sandstones: some patterns of degradation. In: Baer NS, Sabbioni C, Sors AI (eds) Science, technology and european cultural heritage. Butterworth-Heinemann, Oxford, UK, pp 511–514

    Google Scholar 

  • Torre MAD, Gómez-Alarcón G, Palacios JM (1993a) ‘In vitro’ biofilm formation by Penicillium frequentans strains on sandstone, granite, and limestone. Appl Microbiol Biotechnol 40:408–415

    Article  Google Scholar 

  • Torre MADL, Gómez-Alarcón G, Vizcaino G, Garcia MT (1993b) Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry 19:129–147

    Article  Google Scholar 

  • Torres-Sanchez R, Magana-Vazquez A, Sanchez-Yanez JM, Gomez LM (1997) High temperature microbial corrosion in the condenser of a geothermal electric power unit. Mat Perf 36:43–46

    CAS  Google Scholar 

  • Törrönen A, Kubicek CP, Henrissat B (1993) Amino acid sequence similarities between low molecular weight endo-1,4-β-xylanases and family H cellulases revealed by clustering analysis. FEBS Lett 321:135–139

    Article  PubMed  Google Scholar 

  • Tsao R, Anderson TA, Coats JR (1993) The influence of soil macroinvertebrates on primary biodegradation of starch-containing polyethylene films. J Environ Polym Degr 1:301–306

    Article  CAS  Google Scholar 

  • Uhlig HH (1971) Corrosion and corrosion control. Wiley, New York

    Google Scholar 

  • Uhlig HH, Revie RW (1985) Corrosion and corrosion control: an introduction to corrosion science and engineering, 3rd edn. Wiley, New York

    Google Scholar 

  • Urzì C, Realini M (1998) Colour changes of Noto's calcareous sandstone as related to its colonization by microorganisms. Int Biodeter Biodegr 42:45–54

    Article  Google Scholar 

  • Vaidya RU, Butt DP, Hersman LE, Zurek AK (1997) Effect of microbiologically influenced corrosion on the tensile stress-stain response of aluminum and alumina-particle reinforced aluminum composite. Corrosion 53:136–141

    Article  CAS  Google Scholar 

  • Vandevivere P, Kirchman DL (1993) Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl Environ Microbiol 59:3280–3286

    PubMed  CAS  Google Scholar 

  • Vandevivere P (1995) Bacterial clogging of porous media: a new modelling approach. Bifouling 8:281–291

    Article  Google Scholar 

  • van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB (1987) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53:1893–1897

    PubMed  Google Scholar 

  • van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB (1990) Influence of interfaces on microbial activity. Microbiol Rev 54:75–87

    PubMed  Google Scholar 

  • van Westing EPM, Ferrari GM, De Witt JHW (1994) The determination of coating performance with impedance measurements. II: water uptake of coatings. Corrosion Sci 36:957–977

    Article  Google Scholar 

  • Verbicky JW (1988) Polyimides. In: Encyclopedia of polymer science and engineering, vol 12. Wiley, New York, pp 364–383

    Google Scholar 

  • Verbiest T, Burland DM, Jurich MC, Lee VY, Miller RD, Volksen W (1995) Exceptionally thermally stable polyimides for second-order nonlinear optical applications. Science 268:1604–1606

    Article  PubMed  CAS  Google Scholar 

  • Videla HA (1996) Corrosion inhibition by bacteria. In: Videla HA, Fred Wilkes J, Silva RA (eds) Manual of biocorrosion. CRC Press, Boca Raton, pp 121–136

    Google Scholar 

  • Viktorov AN, Novikova ND (1985) Distinctions in formation of microflora on construction materials used in habitable pressurized compartments (in Russian) Kosmicheskaya Biologiya i Aviakosmicheskaya Medistina 19:66–69

    Google Scholar 

  • Viktorov AN, IIyin VK (1992) The actual problems of microbiological control in regenerative life support systems exploration. 43rd congress of the international astronautical confederation congress, IAF/IAA-92-0277, Washington, DC

    Google Scholar 

  • Viktorov AN, Ilyin VK, Syniak J (1993) The problems of microbial safety in regenerative life support systems exploration. 44th congress of the international astronautical confederation congress, IAF/IAA-93-G.4.161 Graza Austria

    Google Scholar 

  • Viktorov AN (1994) The characteristics of interaction between normal and conventionally pathogenic human microflora in different types of closed objects. 45th Congress of the International Astronautical Confederation Congress, IAF/IAA-94-5.165 Jerusalem Israel

    Google Scholar 

  • von Wolzogen Kuhr CAH, van der Vlugt IS (1934) The graphitization of cast iron as an electrochemical process in anaerobic soils. Water (The Hague) 18:147–165

    Google Scholar 

  • Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    PubMed  Google Scholar 

  • Wagner PA, Ray RI (1994) Surface analytical techniques for microbiologically influenced corrosion—a review. In: Kearns JR, Little BJ (eds) Microbiologically influenced corrosion testing. American Society for Testing and Materials, Philadelphia PA, ASTM STP 1232, pp 153–169

    Google Scholar 

  • Wagner P (1995) Microbial degradation of stressed fiber reinforced polymeric composites. NACE International, Houston TX Corrosion

    Google Scholar 

  • Wagner P, Ray R, Hart K, Little B (1996) Microbiological degradation of stressed fiber-reinforced polymeric composites. Mat Perf 35:79–82

    CAS  Google Scholar 

  • Wakefield RD (1997) Masonry biocides: assessments of efficacy and effects on stone. Scottish Soc Conserv Restor 5–11

    Google Scholar 

  • Walch M, Mitchell R (1986) Microbial influence on hydrogen uptake by metals. In: Dexter SC (eds) Biologically induced corrosion: proceedings of the international conference on biologically induced corrosion. National Association of Corrosion Engineers, Houston TX, pp 201–209

    Google Scholar 

  • Walch M, Ford TE, Mitchell R (1989) Influence of hydrogen-producing bacteria on hydrogen uptake by steel. Corrosion 45:705–709

    Article  CAS  Google Scholar 

  • Walch M (1992) Corrosion, microbial. In: Lederberg J (ed) Encyclopedia of microbiology, vol 1. Academic, San Diego, pp 585–591

    Google Scholar 

  • Wang P-C, Mori T, Komori K, Sasatsu M, Toda K, Ohtake H (1989) Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl Environ Microbiol 55:1665–1669

    PubMed  CAS  Google Scholar 

  • Wang C-C, Fan S-J, Wang SJ, Zhang MG (1991) Research on powdery corrosion of the serials bells from Cai Hou Tomb. Sci China (Ser B) 34:522–529

    CAS  Google Scholar 

  • Wang C-C, Wu Y-S, Fan C-Z, Wang SJ, Hua YM (1993) Formation mechanism of particulates in the surface layer of Bronze Mirror Chinese. Sci Bull 38:429–432

    Google Scholar 

  • Wang J-S (1996) Hydrogen induced embrittlement and the effect of the mobility of hydrogen atoms. In: Thompson AW, Moody NR (eds) Hydrogen effects in materials the minerals, metals and materials. Society, Warrendale PA, pp 61–75

    Google Scholar 

  • Warcheid T, Oelting M, Krumbein WE (1991) Physico-chemical aspects of biodeterioration processes on rocks with special regard to organic pollutants. Int Biodeter 28:37–48

    Article  Google Scholar 

  • Weimer PL, van Kavelaar MJ, Michel CB, Ng TK (1988) Effect of phosphate on the corrosion of carbon steel and on the composition of corrosion products in two-stage continuous cultures of Desulfovibrio desulfuricans. Appl Environ Microbiol 54:386–396

    PubMed  CAS  Google Scholar 

  • Westlake DWS, Semple KM, Obuekwe CO (1986) Corrosion by ferric iron-reducing bacteria isolated from oil production systems. In: Dexter SC (ed) Biologically induced corrosion: proceedings of the international conference on biologically induced corrosion. National Association of Corrosion Engineers, Houston TX, pp 193–200

    Google Scholar 

  • White DC, Nivens DE, Geesey GG, Clarke CK (1986) Role of aerobic bacteria and their extracellular polymers in the facilitation of corrosion: use of Fourier transforming infrared spectroscopy and ‘signature’ phospholipid fatty acid analysis. In: Dexter SC (ed) Biologically induced corrosion. Proceedings of the international conference on biologically induced corrosion. National Association of Corrosion Engineers, Houston, pp 233–243

    Google Scholar 

  • Whitfield C (1988) Bacterial extracellular polysaccharides. Can J Microbiol 34:415–420

    Article  PubMed  CAS  Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate-and sulfite-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 469–585

    Google Scholar 

  • Widdel F (1992) Microbial corrosion. In: Finn RF, Prave P, Schlingmann M, Crueger W, Esser K, Thauer R, Wagner F (eds) Biotechnology focus, vol 3. Hanser, Munich, pp 261–300

    Google Scholar 

  • Wiencek KM, Fletcher M (1995) Bacterial adhesion to hydroxyl-and methyl-terminated alkanethiol self-assembled monolayer. J Bacteriol 177:1959–1966

    PubMed  CAS  Google Scholar 

  • Wilkinson JF, Stark GH (1956) The synthesis of polysaccharide by washed suspensions of Klebsiella aerogenes. Proc Roy Phys Soc Edinburgh 25:35–39

    Google Scholar 

  • Williams ST, Sharpe ME, Holt JG (1989) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, http://www.cme.msu.edu/bergeys

  • Williams V, Fletcher M (1996) Pseudomonas fluorescens adhesion and transport through porous media are affected by lipopolysaccharide composition. Appl Environ Microbiol 62:100–104

    PubMed  CAS  Google Scholar 

  • Williamson PR (1994) The screening of sponge extracts for antifouling activity using a bioassay with laboratory-reared cyprid larvae of the barnacle Balanus amphitrite. Int Biodeter Biodegr 34:361–373

    Article  Google Scholar 

  • Williamson PR, Wakamatsu K, Ito S (1998) Melanin biosynthesis in Cryptococcus neoformans. J Bacteriol 180:1570–1572

    PubMed  CAS  Google Scholar 

  • Wimpenny JWT, Colasanti R (1997) A unifying hypothesis for the structure of microbial biofilm based on cellular automaton models. FEMS Microbiol Ecol 22:1–6

    Article  CAS  Google Scholar 

  • Wirsen CO, Jannasch HW (1993) Microbial degradation of a starch-based biopolymer in the marine environment. In: Kaplan D, Thomas E, Ching C (eds) Fundamentals of biodegradable materials and packaging. Technomic, Lancaster, pp 297–310

    Google Scholar 

  • Woese CR, Olsen GJ (1986) Archaebacterial phylogeny: perspectives on the Urkingdoms System. Appl Microbiol 7:161–177

    CAS  Google Scholar 

  • Woese CR (1987) Microbial evolution. Microbiol Rev 51:221–171

    PubMed  CAS  Google Scholar 

  • Woese CR (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eukarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1998) Default taxonomy: Ernest Mayr’s view of the microbial world. Proc Natl Acad Sci USA 95:11043–11046

    Article  PubMed  CAS  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell SJ, Caldwell DE (1994) Multicellular organization in a degradative biofilm community. Appl Environ Microbiol 60:434–446

    PubMed  CAS  Google Scholar 

  • Wong KKY, Tan LUL, Saddler JN (1988) Multiplicity of β-1,4-xylanase in microorganisms: function and applications. Microbiol Rev 52:305–317

    PubMed  CAS  Google Scholar 

  • Wu Y-S, Wang C-S, Fan C-Z, Wang S-J, Li Z-C (1992) A study on corrosion-resistance mechanism of the ancient mirror ‘Hei Qi Gu’. Acta Phys Sinica 41:170–176

    CAS  Google Scholar 

  • Xu X, Stewart PS, Chen X (1996) Transport limitation of chlorine disinfection of Pseudomonas aeruginosa entrapped in alginate beads. Biotechnol Bioeng 49:93–100

    Article  PubMed  CAS  Google Scholar 

  • Yao Y, Li Y (1995) Research and development of concrete admixtures. Chinese J Mat Res 9(Suppl):381–390

    Google Scholar 

  • Yoshizako F, Nishimura A, Chubachi M (1992) Microbial reduction of cyclohexanone by Chlorella pyrenoidosa. Chick J Ferment Bioeng 74:395–397

    Article  CAS  Google Scholar 

  • Young GH (1948) Anti-fouling measures. In: Uhlig HH (ed) The corrosion handbook. Wiley, New York, pp 441–446

    Google Scholar 

  • Young LL, Cerniglia CE (1995) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York

    Google Scholar 

  • Yu FP, McFeters GA (1994) Physiological responses of bacteria in biofilms to disinfection. Appl Environ Microbiol 60:2462–2466

    PubMed  CAS  Google Scholar 

  • Yue S, Pilliar RM, Weatherly GC (1984) The fatigue strength of porous-coated Ti-6%Al-4%V implant alloy. J Biomed Mat Res 18:1043–1058

    Article  CAS  Google Scholar 

  • Zachary A, Taylor ME, Scott FE, Colwell RR (1980) Marine microbial colonization on material surfaces. In: Oxley TA, Becker G, Allsopp D (eds) Biodeterioration: proceedings of the 4th international biodeterioration symposium. Pitman, London, pp 171–177

    Google Scholar 

  • Zaloguyev SN (1985) Results of microbiological studies conducted during operation of Salyut-6 orbital space station (in Russian) Kosmicheskaya Biologiya i Aviakosmicheskaya Medistina 19:64–66

    Google Scholar 

  • Zavarzin GA, Zhilina TN, Pusheva MA (1994) Halophilic acetogenic bacteria. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 432–444

    Chapter  Google Scholar 

  • Zehnder AJB, Stumm W (1988) Geochemistry and biochemistry of anaerobic habitats. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 1–38

    Google Scholar 

  • Zhou Z, Brown N (1995) Slow crack growth in polyethylene gas pipes and resins. Chinese J Mat Res 9(Suppl):463–472

    Google Scholar 

  • Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis: ecology, physiology, biochemistry and genetics. Chapman and Hall, New York, pp 128–206

    Google Scholar 

  • Zuo J, Xu C, Liu X, Wang C (1994) Study of the Raman spectrum of nanometer SnO2. J Appl Phys 75:1835–1836

    Article  CAS  Google Scholar 

  • Zyska B (1996) Performance of paper in Polish books of the period 1900–1994. Restaurator 17:214–228

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Preparation of this manuscript was partially supported by the “One-Hundred Talent Project” of the Chinese Academy of Sciences to J.-D.G. This work was also supported in part by grants No. BES-990 6337 from the U.S. Natural Parks Service, National Center for the Preservation Technology and Training to Harvard University. We would like to thank Jessie Lai and Yanzhen Fan for the digitalization of images and Yanzhen Fan for preparation of the references.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Gu, JD., Mitchell, R. (2013). Biodeterioration. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31331-8_31

Download citation

Publish with us

Policies and ethics