Skip to main content

Cut-Open Oocyte Voltage-Clamp Technique

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics

Introduction

The cut-open oocyte Vaseline gap (COVG) voltage clamp technique, a relatively recent addition to the electrophysiologist’s armamentarium, was specifically developed by Drs. Stefani and Bezanilla (Bezanilla et al. 1991) to achieve low-noise recordings of the membrane of Xenopus laevis oocytes with fast clamp speed and thus optimize the most popular transient expression system to reveal the activity voltage-dependent proteins previously difficult to resolve by alternative methods. The high degree of specialization of this technique is complemented by its flexibility; in addition to oocyte perfusion, COVG can be combined with optical measurements (voltage clamp fluorometry and spectroscopy) and flash photolysis for the instantaneous release of intracellular caged compounds, expanding its use beyond electrophysiology.

Historical Points

During the cloning era, the oocytes of the African clawed frog (Xenopus laevis) emerged as a powerful biological tool, as their large size (≈1...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bannister JP, Chanda B, Bezanilla F, Papazian DM (2005) Optical detection of rate-determining ion-modulated conformational changes of the ether-a-go-go K+ channel voltage sensor. Proc Natl Acad Sci USA 102:18718–18723

    Article  CAS  Google Scholar 

  • Ben Chaim Y, Chanda B, Dascal N, Bezanilla F, Parnas I, Parnas H (2006) Movement of ‘gating charge’ is coupled to ligand binding in a G-protein-coupled receptor. Nature 444:106–109

    Article  CAS  Google Scholar 

  • Bezanilla F, Perozo E, Papazian DM, Stefani E (1991) Molecular basis of gating charge immobilization in Shaker potassium channels. Science 254:679–683

    Article  CAS  Google Scholar 

  • Cha A, Bezanilla F (1997) Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence. Neuron 19:1127–1140

    Article  CAS  Google Scholar 

  • Cha A, Ruben PC, George AL Jr, Fujimoto E, Bezanilla F (1999) Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. Neuron 22:73–87

    Article  CAS  Google Scholar 

  • Gandhi CS, Olcese R (2008) The voltage-clamp Fluorometry technique. In: Lippiat JD (ed) Methods in molecular biology, potassium channels. Humana Press, Totowa, pp 213–231

    Chapter  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy, vol 954, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Mannuzzu LM, Moronne MM, Isacoff EY (1996) Direct physical measure of conformational rearrangement underlying potassium channel gating. Science 271:213–216

    Article  CAS  Google Scholar 

  • Miceli F, Cilio MR, Taglialatela M, Bezanilla F (2009) Gating currents from neuronal K(V)7.4 channels: general features and correlation with the ionic conductance. Channels (Austin) 3:274–283

    Article  Google Scholar 

  • Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435:1239–1243

    Article  CAS  Google Scholar 

  • Neely A, Wei X, Olcese R, Birnbaumer L, Stefani E (1993) Potentiation by the beta subunit of the ratio of the ionic current to the charge movement in the cardiac calcium channel. Science 262:575–578

    Article  CAS  Google Scholar 

  • Olcese R, Latorre R, Toro L, Bezanilla F, Stefani E (1997) Correlation between charge movement and ionic current during slow inactivation in Shaker K+ channels. J Gen Physiol 110:579–589

    Article  CAS  Google Scholar 

  • Pantazis A, Gudzenko V, Savalli N, Sigg D, Olcese R (2010a) Operation of the voltage sensor of a human voltage- and Ca2+-activated K+ channel. Proc Natl Acad Sci USA 107:4459–4464

    Article  CAS  Google Scholar 

  • Pantazis A, Kohanteb AP, Olcese R (2010b) Relative motion of transmembrane segments S0 and S4 during voltage sensor activation in the human BK(Ca) channel. J Gen Physiol 136:645–657

    Article  CAS  Google Scholar 

  • Pantazis A, Savalli N, Sigg D, Neely A, Olcese R (2014) Functional heterogeneity of the four voltage sensors of a human L-type calcium channel. Proc Natl Acad Sci USA 111:18381–18386

    Article  CAS  Google Scholar 

  • Perozo E, Papazian DM, Stefani E, Bezanilla F (1992) Gating currents in Shaker K+ channels. Implications for activation and inactivation models. Biophys J 62:160–168

    Article  CAS  Google Scholar 

  • Piper DR, Varghese A, Sanguinetti MC, Tristani-Firouzi M (2003) Gating currents associated with intramembrane charge displacement in HERG potassium channels. Proc Natl Acad Sci USA 100:10534–10539

    Article  CAS  Google Scholar 

  • Savalli N, Kondratiev A, Toro L, Olcese R (2006) Voltage-dependent conformational changes in human Ca(2+)- and voltage-activated K(+) channel, revealed by voltage-clamp fluorometry. Proc Natl Acad Sci USA 103:12619–12624

    Article  CAS  Google Scholar 

  • Savalli N, Kondratiev A, de Quintana SB, Toro L, Olcese R (2007) Modes of operation of the BKCa channel beta2 subunit. J Gen Physiol 130:117–131

    Article  CAS  Google Scholar 

  • Shih TM, Smith RD, Toro L, Goldin AL (1998) High-level expression and detection of ion channels in Xenopus oocytes. Methods Enzymol 293:529–556

    Article  CAS  Google Scholar 

  • Smith PL, Yellen G (2002) Fast and slow voltage sensor movements in HERG potassium channels. J Gen Physiol 119:275–293

    Article  CAS  Google Scholar 

  • Stefani E, Bezanilla F (1998) Cut-open oocyte voltage-clamp technique. Methods Enzymol 293:300–318

    Article  CAS  Google Scholar 

  • Taglialatela M, Stefani E (1993) Gating currents of the cloned delayed-rectifier K+ channel DRK1. Proc Natl Acad Sci USA 90:4758–4762

    Article  CAS  Google Scholar 

  • Taglialatela M, Toro L, Stefani E (1992) Novel voltage clamp to record small, fast currents from ion channels expressed in Xenopus oocytes. Biophys J 61:78–82

    Article  CAS  Google Scholar 

  • Tang CY, Bezanilla F, Papazian DM (2000) Extracellular Mg(2+) modulates slow gating transitions and the opening of Drosophila ether-a-Go-Go potassium channels. J Gen Physiol 115:319–338

    Article  CAS  Google Scholar 

  • Villalba-Galea CA, Sandtner W, Starace DM, Bezanilla F (2008) S4-based voltage sensors have three major conformations. Proc Natl Acad Sci USA 105:17600–17607

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Olcese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 European Biophysical Societies' Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pantazis, A., Olcese, R. (2019). Cut-Open Oocyte Voltage-Clamp Technique. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_371-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_371-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics