Skip to main content

Psychophysische und Neurophysiologische Messverfahren in der Schmerzmedizin

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Praktische Schmerzmedizin

Part of the book series: Springer Reference Medizin ((SRM))

  • 208 Accesses

Zusammenfassung

Die Funktionsfähigkeit des somatosensorischen Systems wird durch klinische Sensibilitätsprüfung, quantitative sensorische Testung (QST) oder elektrophysiologische Messverfahren geprüft. Dabei geht es um evozierten Schmerz, der vermindert (Hypalgesie) oder gesteigert (Hyperalgesie, Allodynie) sein kann, sowie um veränderten Tastsinn, Propriozeption oder Temperatursinn. Die QST zeichnet sich durch eine stärkere Formalisierung des Untersuchungsablaufs, die Verwendung von kalibrierten Reizstärken und die Standardisierung der Instruktionen für den Patienten aus und liefert reproduzierbare und vom Untersucher unabhängige Befunde. Elektrophysiologische Messverfahren liefern objektive Befunde zur Funktion des somatosensorischen Systems. Mittels Elektroneurogramms (ENG) und somatosensorisch evozierter Potenziale (SEP) werden die dicken myelinisierten Afferenzen und die Hinterstrangbahnen geprüft. Durch Laser-evozierte Potenziale (LEP) werden Veränderungen der Funktion der dünnen nozizeptiven Afferenzen und des spinothalamischen Traktes erfasst.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

Literatur zu Abschn. 1

  • Baron R, Wasner G (1998) Quantitative Thermotestung. Untersuchung der thermosensiblen und nozizeptiven. Afferenzen bei Neuropathien Schmerz 12:209–211

    CAS  Google Scholar 

  • Baron R, Maier C, Attal N, Binder A, Bouhassira D, Cruccu G, Finnerup NB, Haanpää M, Hansson P, Hüllemann P, Jensen TS, Freynhagen R, Kennedy JD, Magerl W, Mainka T, Reimer M, Rice AS, Segerdahl M, Serra J, Sindrup S, Sommer C, Tölle T, Vollert J, Treede RD (2017) Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles. Pain 158:261–272

    Article  Google Scholar 

  • Baumgärtner U, Magerl W, Klein T, Hopf HC, Treede RD (2002) Neurogenic hyperalgesia versus painful hypoalgesia: two distinct mechanisms of neuropathic pain. Pain 96:141–151

    Article  Google Scholar 

  • Beise RD, Carstens E, Kohllöffel LUE (1998) Psychophysical study of stinging pain evoked by brief freezing of superficial skin and ensuing short-lasting changes in sensations of cool and cold pain. Pain 74:275–286

    Article  CAS  Google Scholar 

  • Chan AW, MacFarlane IA, Bowsher D, Campbell JA (1992) Weighted needle pinprick sensory thresholds: a simple test of sensory function in diabetic peripheral neuropathy. J Neurol Neurosurg Psychiatr 55:56–59

    Article  CAS  Google Scholar 

  • Cruccu G, Sommer C, Anand P, Attal N, Baron R, Garcia-Larrea L, Haanpää M, Jensen TS, Serra J, Treede RD (2010) EFNS guidelines on neuropathic pain assessment; revised 2009. Eur J Neurol 17:1010–1018

    Article  CAS  Google Scholar 

  • Frost SA, Raja SN, Campbell JN, Meyer RA, Khan AA (1988) Does hyperalgesia to cooling stimuli characterize patients with sympathetically maintained pain (reflex sympathetic dystrophy)? In: Dubner R, Gebhart GF, Bond MR (Hrsg) Proceedings of the Vth world congress on pain. Elsevier, Amsterdam, S 151–156

    Google Scholar 

  • Fruhstorfer H, Lindblom U, Schmidt WG (1976) Method for quantitative estimation of thermal thresholds in patients. J Neurol Neurosurg Psychiatr 39:1071–1075

    Article  CAS  Google Scholar 

  • Fruhstorfer H, Gross W, Selbmann O (2001) von Frey hairs: new materials for a new design. Eur J Pain 5:341–342

    Article  CAS  Google Scholar 

  • Geber C, Scherens A, Pfau D, Nestler N, Zenz M, Tolle T, Baron R, Treede RD, Maier C (2009) Procedure for certification of QST laboratories. Schmerz 23:65–69

    Article  CAS  Google Scholar 

  • Gracely RH, Grant MAB, Giesecke T (2003) Evoked pain measures in fibromyalgia. Best Pract Res Clin Rheumatol 17:593–609

    Article  Google Scholar 

  • Greenspan JD, McGillis SLB (1991) Stimulus features relevant to the perception of sharpness and mechanically evoked cutaneous pain. Somatosens Mot Res 8:137–147

    Article  CAS  Google Scholar 

  • Jensen TS, Baron R (2003) Translation of symptoms and signs into mechanisms in neuropathic pain. Pain 102:1–8

    Article  Google Scholar 

  • Koltzenburg M, Lundberg LER, Torebjörk HE (1992) Dynamic and static components of mechanical hyperalgesia in human hairy skin. Pain 51:207–219

    Article  CAS  Google Scholar 

  • Magerl W, Krumova EK, Baron R, Tölle T, Treede RD, Maier C (2010) Reference data for quantitative sensory testing (QST): refined stratification for age and a novel method for statistical comparison of group data. Pain 151:598–605

    Article  Google Scholar 

  • Maier C, Baron R, Tölle TR, Binder A, Birbaumer N, Birklein F, Giertmühlen J, Flor H, Geber C, Huge V, Krumova EK, Landwehrmeyer GB, Magerl W, Maihöfner C, Richter H, Rolke R, Scherens A, Schwarz A, Sommer C, Tronnier V, Üceyler N, Valet M, Wasner G, Treede RD (2010) Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 150:439–450

    Article  CAS  Google Scholar 

  • Merskey H, Albe-Fessard D, Bonica JJ, Carmon A, Dubner R, Kerr FWL, Lindblom U, Mumford JM, Nathan PW, Noordenbos W, Pagni CA, Renaer MJ, Sternbach RA, Sunderland S (1979) Pain terms: a list with definitions and notes on usage. Recommended by the IASP subcommittee on taxonomy. Pain 6:249–252

    Article  Google Scholar 

  • Ochoa JL, Yarnitsky D (1993) Mechanical hyperalgesias in neuropathic pain patients: dynamic and static subtypes. Ann Neurol 33:465–472

    Article  CAS  Google Scholar 

  • Perkins BA, Bril V (2003) Diabetic neuropathy: a review emphasizing diagnostic methods. Clin Neurophysiol 114:1167–1175

    Article  Google Scholar 

  • Pestronk A, Florence J, Levine T, Al-Lozi MT, Lopate G, Miller T, Ramneantu I, Waheed W, Stambuk M (2004) Sensory exam with a quantitative tuning fork. Rapid, sensitive and predictive of SNAP amplitude. Neurology 62:461–464

    Article  CAS  Google Scholar 

  • Pfau DB, Geber C, Birklein F, Treede RD (2012) Quantitative sensory testing of neuropathic pain patients: potential mechanistic and therapeutic implications. Curr Pain Headache Rep 16:199–206

    Article  Google Scholar 

  • Rolke R, Magerl W, Andrews-Campbell K, Schalber C, Caspari S, Birklein F, Treede RD (2006) Quantitative sensory testing: a comprehensive protocol for clinical trials. Eur J Pain 10:77–88

    Article  CAS  Google Scholar 

  • Shy ME, Frohman EM, So YT, Arezzo JC, Cornblath DR, Giuliani MJ, Kincaid JC, Ochoa JL, Parry GJ, Weimer LH (2003) Quantitative sensory testing: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 60:898–904

    Article  CAS  Google Scholar 

  • Treede RD, Meyer RA, Raja SN, Campbell JN (1995) Evidence for two different heat transduction mechanisms in nociceptive primary afferents innervating monkey skin. J Physiol 483:747–758

    Article  CAS  Google Scholar 

  • Treede RD, Rolke R, Andrews K, Magerl W (2002) Pain elicited by blunt pressure: neurobiological basis and clinical relevance. Pain 98:235–240

    Article  Google Scholar 

  • Treede RD, Handwerker HO, Baumgärtner U, Meyer RA, Magerl W (2004) Hyperalgesia and allodynia: taxonomy, assessment, and mechanisms. In: Brune K, Handwerker HO (Hrsg) Hyperalgesia: molecular mechanisms and clinical implications. IASP Press, Seattle, S 1–15

    Google Scholar 

  • Vollert J, Maier C, Attal N, Bennett DLH, Bouhassira D, Enax-Krumova EK, Finnerup NB, Freynhagen R, Gierthmühlen J, Haanpää M, Hansson P, Hüllemann P, Jensen TS, Magerl W, Ramirez JD, Rice ASC, Schuh-Hofer S, Segerdahl M, Serra J, Shillo PR, Sindrup S, Tesfaye S, Themistocleous AC, Tölle TR, Treede RD, Baron R (2017) Stratifying patients with peripheral neuropathic pain based on sensory profiles: algorithm and sample size recommendations. Pain 158:1446–1455

    Article  Google Scholar 

  • Yarnitsky D (1997) Quantitative sensory testing. Muscle Nerve 20:198–204

    Article  CAS  Google Scholar 

  • Yarnitsky D, Sprecher E (1994) Thermal testing: normative data and repeatability for various test algorithms. J Neurol Sci 125:39–45

    Article  CAS  Google Scholar 

  • Yarnitsky D, Sprecher E, Zaslansky R, Hemli JA (1995) Heat pain thresholds: normative data and repeatability. Pain 60:329–332

    Article  CAS  Google Scholar 

  • Ziegler D, Mayer P, Gries FA (1988) Evaluation of thermal, pain, and vibration sensation thresholds in newly diagnosed type 1 diabetic patients. J Neurol Neurosurg Psychiatry 51:1420–1424

    Article  CAS  Google Scholar 

  • Ziegler EA, Magerl W, Meyer RA, Treede RD (1999) Secondary hyperalgesia to punctate mechanical stimuli: central sensitization to A – fibre nociceptor input. Brain 122:2245–2257

    Article  Google Scholar 

Literatur zu Abschn. 2

  • Babiloni C, Brancucci A, Babiloni F, Capotosto P, Carducci F, Cincotti F, Arendt-Nielsen L, Chen ACN, Rossini PM (2003) Anticipatory cortical responses during the expectancy of a predictable painful stimulation. A high-resolution electroencephalography study. Eur J Neurosci 18:1692–1700

    Article  Google Scholar 

  • Backonja M, Howland EW, Wang J, Smith J, Salinsky M, Cleeland CS (1991) Tonic changes in alpha power during immersion of the hand in cold water. Electroenceph Clin Neurophysiol 79:192–203

    Article  CAS  Google Scholar 

  • Baron R, Saguer M (1993) Postherpetic neuralgia. Are C-nociceptors involved in signalling and maintenance of tactile allodynia? Brain 116:1477–1496

    Article  Google Scholar 

  • Baumgärtner U, Greffrath W, Treede RD (2012) Contact heat and cold, mechanical, electrical and chemical stimuli to elicit small fiber-evoked potentials: merits and limitations for basic science and clinical use. Neurophysiol Clin 42:267–280

    Article  Google Scholar 

  • Biasiotta A, Casato M, La Cesa S, Colantuono S, Di Stefano G, Leone C, Carlesimo M, Piroso S, Cruccu G, Truini A (2014) Clinical, neurophysiological, and skin biopsy findings in peripheral neuropathy associated with hepatitis C virus-related cryoglobulinemia. J Neurol 261:725–731

    Article  CAS  Google Scholar 

  • Birklein F, Riedl B, Neundörfer B, Handwerker HO (1998) Sympathetic vasoconstrictor reflex pattern in patients with complex regional pain syndrome. Pain 75:93–100

    Article  CAS  Google Scholar 

  • Bromm B, Lorenz J (1998) Neurophysiological evaluation of pain. Electroenceph Clin Neurophysiol 107:227–253

    Article  CAS  Google Scholar 

  • Bromm B, Jahnke MT, Treede RD (1984) Responses of human cutaneous afferents to CO2 laser stimuli causing pain. Exp Brain Res 55:158–166

    Article  CAS  Google Scholar 

  • Cruccu G, Aminoff MJ, Curio G, Guerit JM, Kakigi R, Mauguiere F, Rossini PM, Treede RM, Garcia-Larrea L (2008) 3. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol 119:1705–1719

    Article  CAS  Google Scholar 

  • Cruccu G, Sommer C, Anand P, Attal N, Baron R, Garcia-Larrea L, Haanpää M, Jensen TS, Serra J, Treede RD (2010) EFNS guidelines on neuropathic pain assessment; revised 2009. Eur J Neurol 17: 1010–1018

    Article  CAS  Google Scholar 

  • Davis KD, Flor H, Greely HT, Iannetti GD, Mackey S, Ploner M, Pustilnik A, Tracey I, Treede RD, Wager TD (2017) Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations. Nat Rev Neurol 13:624–638

    Article  Google Scholar 

  • Doughty CT, Seyedsadjadi R (2018) Approach to peripheral neuropathy for the primary care clinician. Am J Med pii S0002-9343(18):30034–30032. https://doi.org/10.1016/j.amjmed.2017.12.042

    Article  Google Scholar 

  • Duysens J, Trippel M, Horstmann GA, Dietz V (1990) Gating and reversal of reflexes in ankle muscles during human walking. Exp Brain Res 82:351–358

    Article  CAS  Google Scholar 

  • Ebenezer GJ, Hauer P, Gibbons C, McArthur JC, Polydefkis M (2007) Assessment of epidermal nerve fibers: a new diagnostic and predictive tool for peripheral neuropathies. J Neuropathol Exp Neurol 66:1059–1073

    Article  Google Scholar 

  • Fitzek S, Baumgärtner U, Fitzek C, Magerl W, Urban P, Thömke F, Marx J, Treede RD, Stoeter P, Hopf HC (2001) Mechanisms and predictors of chronic facial pain in lateral medullary infarction. Ann Neurol 49:493–500

    Article  CAS  Google Scholar 

  • García-Larrea L, Convers P, Magnin M, André-Obadia N, Peyron R, Laurent B, Mauguière F (2002) Laser-evoked potential abnormalities in central pain patients: the influence of spontaneous and provoked pain. Brain 125:2766–2781

    Article  Google Scholar 

  • Gibson SJ, Littlejohn GO, Gorman MM, Helme RD, Granges G (1994) Altered heat pain thresholds and cerebral event-related potentials following painful CO2 laser stimulation in subjects with fibromyalgia syndrome. Pain 58:185–193

    Article  CAS  Google Scholar 

  • Grönroos M, Pertovaara A (1993) Capsaicin-induced central facilitation of a nociceptive flexion reflex in humans. Neurosci Lett 159:215–218

    Article  Google Scholar 

  • Hopf HC, Thömke F, Gutmann L (1991) Midbrain vs. pontine medial longitudinal fasciculus lesions: the utilization of masseter and blink reflexes. Muscle Nerve 14:326–330

    Article  CAS  Google Scholar 

  • Kleggetveit IP, Namer B, Schmidt R, Helås T, Rückel M, Ørstavik K, Schmelz M, Jørum E (2012) High spontaneous activity of C-nociceptors in painful polyneuropathy. Pain 153:2040–2047

    Article  CAS  Google Scholar 

  • Lorenz J, Grasedyck K, Bromm B (1996) Middle and long latency somatosensory evoked potentials after painful laser stimulation in patients with fibromyalgia syndrome. Electroenceph Clin Neurophysiol 100:165–168

    Article  CAS  Google Scholar 

  • Papanas N, Ziegler D (2015) Corneal confocal microscopy: recent progress in the evaluation of diabetic neuropathy. J Diab Invest 6:381–389

    Article  Google Scholar 

  • Perkins BA, Bril V (2003) Diabetic neuropathy: a review emphasizing diagnostic methods. Clin Neurophysiol 114: 1167–1175

    Article  Google Scholar 

  • Peyron R, Frot M, Schneider F, Garcia-Larrea L, Mertens P, Barral FG, Sindou M, Laurent B, Mauguière F (2002) Role of operculoinsular cortices in human pain processing: converging evidence from PET, fMRI, dipole modeling, and intracerebral recordings of evoked potentials. NeuroImage 17:1336–1346

    Article  CAS  Google Scholar 

  • Ploner M, May ES (2018) Electroencephalography and magnetoencephalography in pain research–current state and future perspectives. Pain 159:206–211

    Article  Google Scholar 

  • Schomburg ED (1997) Restrictions on the interpretation of spinal reflex modulation in pain and analgesia research. Pain Forum 6:101–109

    Article  Google Scholar 

  • Schüller TB, Hermann K, Baron R (2000) Quantitative assessment and correlation of sympathetic, parasympathetic, and afferent small fiber function in peripheral neuropathy. J Neurol 247:267–272

    Article  Google Scholar 

  • Serra J, Bostock H, Solà R, Aleu J, García E, Cokic B, Navarro X, Quiles C (2012) Microneurographic identification of spontaneous activity in C-nociceptors in neuropathic pain states in humans and rats. Pain 153:42–55

    Article  CAS  Google Scholar 

  • Spiegel J, Hansen C, Treede RD (2000) Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser evoked potentials. Clin Neurophysiol 111:725–735

    Article  CAS  Google Scholar 

  • Tarkka IM, Treede RD (1993) Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J Clin Neurophysiol 10:513–519

    Article  CAS  Google Scholar 

  • Torebjörk E (1993) Human microneurography and intraneural microstimulation in the study of neuropathic pain. Muscle Nerve 16:1063–1065

    Article  Google Scholar 

  • Treede RD (2005) Funktionsprüfung der nozizeptiven Bahnen durch SEP nach schmerzhaften Laser-Hitzereizen. In: Stöhr M, Dichgans J, Buettner UW, Hess CW (Hrsg) Evozierte Potenziale, 4. Aufl. Springer, Berlin/Heidelberg/New York, S 600–621

    Google Scholar 

  • Treede RD, Lorenz J, Baumgärtner U (2003) Clinical usefulness of laser-evoked potentials. Neurophysiol Clin 33:303–314

    Article  Google Scholar 

  • Urasaki E, Wada SI, Kadoya C, Tokimura T, Yokota A, Matsuoka S, Fukumura A, Hamada S (1990) Skin and epidural recording of spinal somatosensory evoked potentials following median nerve stimulation: correlation between the absence of spinal N13 and impaired pain sense. J Neurol 237:410–415

    Article  CAS  Google Scholar 

  • Valeriani M, de Tommaso M, Restuccia D, Le Pera D, Guido M, Iannetti GD, Libro G, Truini A, DiTrapani G, Puca F, Tonali P, Cruccu G (2003) Reduced habituation to experimental pain in migraine patients: a CO2 laser evoked potential study. Pain 105:57–64

    Article  CAS  Google Scholar 

  • Wasner G, Schattschneider J, Baron R (2002) Skin temperature side differences – a diagnostic tool for CRPS? Pain 98:19–26

    Article  Google Scholar 

  • Willer JC (1985) Studies on pain. Effects of morphine on a spinal nociceptive flexion reflex and related pain sensation in man. Brain Res 331:105–114

    Article  CAS  Google Scholar 

  • Zhang ZG, Hu L, Hung YS, Mouraux A, Iannetti GD (2012) Gamma-band oscillations in the primary somatosensory cortex – a direct and obligatory correlate of subjective pain intensity. J Neurosci 32:7429–7438

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf-Detlef Treede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Treede, RD. (2018). Psychophysische und Neurophysiologische Messverfahren in der Schmerzmedizin. In: Baron, R., Koppert, W., Strumpf, M., Willweber-Strumpf, A. (eds) Praktische Schmerzmedizin. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54670-9_9-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54670-9_9-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54670-9

  • Online ISBN: 978-3-642-54670-9

  • eBook Packages: Springer Referenz Medizin

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Psychophysische und Neurophysiologische Messverfahren in der Schmerzmedizin
    Published:
    05 December 2018

    DOI: https://doi.org/10.1007/978-3-642-54670-9_9-2

  2. Original

    Quantitative sensorische Testung (QST)
    Published:
    27 October 2014

    DOI: https://doi.org/10.1007/978-3-642-54670-9_9-1