Skip to main content

Aminoazidopathien

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Pädiatrie

Part of the book series: Springer Reference Medizin ((SRM))

  • 483 Accesses

Zusammenfassung

Gemeinsames biochemisches Merkmal aller angeborenen Aminoazidopathien, die durch angeborene Defekte spezifischer Enzyme und Transporter verursacht werden, ist die Akkumulation charakteristischer Aminosäuren und z. T. weiterer diagnostisch relevanter Metaboliten. Die Schwere der klinischen Präsentation wird durch den Schweregrad des Enzymdefektes, die Kompartimentierung und (organ-)spezifische Toxizität akkumulierender Metabolite sowie Ausmaß und Dauer der Proteinzufuhr bzw. des endogenen Proteinabbaus bestimmt. Ein vermehrter Proteinabbau wird durch unzureichende Energie- oder Proteinzufuhr im Rahmen eines Gewebskatabolismus, z. B. nach Operationen und bei interkurrenten Infekten, Nahrungsverweigerung, Erbrechen, aber auch durch eine hohe, über dem Grundbedarf liegende Eiweißzufuhr aktiviert. Eckpfeiler der Behandlung von Aminoazidopathien sind spezielle, an die individuelle Verträglichkeit einzelner Aminosäuren angepasste Diäten und bei schweren Krankheitszuständen eine extrakorporale Entgiftung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Weiterführende Literatur

  • Almond PS, Matas AJ, Nakhleh RE et al (1993) Renal transplantation for infantile cystinosis: long-term follow-up. J Pediatr Surg 28:232–238

    Article  CAS  Google Scholar 

  • Aquaron RR (2011) Alkaptonuria in France: past experience and lessons for the future. J Inherit Metab Dis 34:1115–1126

    Article  Google Scholar 

  • AWMF-Leitlinie Nr. 027/021

    Google Scholar 

  • Baker PR, Friederich MW, Swanson MA et al (2014) Variant non-ketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5. Brain 137:366–379. https://doi.org/10.1093/brain/awt328. PMCID: PMC3914472

    Article  PubMed  Google Scholar 

  • Baric I, Fumic K, Glenn B et al (2004) S-Adenosylhomocysteine hydrolase deficiency in a human: a genetic disorder of methionine metabolism. Proc Natl Acad Sci U S A 101:4234–4239

    Article  CAS  Google Scholar 

  • Baron DN, Dent CE, Harris H, Hart EW, Jepson JB (1956) Hereditary pellagra-like skin rash with temporary cerebellar ataxia, constant renal amino-aciduria and other bizarre biochemical features. Lancet 268:421–428

    Article  Google Scholar 

  • Bickel H, Gerrard J, Hickmans EM (1953) Influence of phenylalanine intake on phenylketonuria. Lancet 265:812–813

    Article  CAS  Google Scholar 

  • Burgard P, Schmidt E, Rupp A, Schneider W, Bremer WJ (1996) Intellectual development of the patients of the German collaborative study of children treated for phenylketonuria. Eur J Pediatr 155(1):S33–S38

    Article  Google Scholar 

  • Cherqui S (2012) Cysteamine therapy: a treatment for cystinosis, not a cure. Kidney Int 81:127–129

    Article  CAS  Google Scholar 

  • Christ SE, Price MH, Bodner KE, Saville C, Moffitt AJ, Peck D (2016) Morphometric analysis of gray matter integrity in individuals with early-treated phenylketonuria. Mol Genet Metab 118:3–8. https://doi.org/10.1016/j.ymgme.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  • Garrod AE (1902) The incidence of alkaptonuria: a study in chemical individuality. Lancet 160:1616–1620

    Article  Google Scholar 

  • Garrod AE (1908) The Croonian lectures on inborn errors of metabolism. Lectures I, II, III, IV. Lancet 172:1–7, 73–79, 142–148, 214–220

    Article  Google Scholar 

  • Gramer G, Nennstiel-Ratzel U, Hoffmann GF (2018) 50 Jahre Neugeborenenscreening in Deutschland – Bisherige Ergebnisse und zukünftige Herausforderungen. Monatsschr Kinderheilkd. (im Druck)

    Google Scholar 

  • Guthrie R (1996) The introduction of newborn screening for phenylketonuria. A personal history. Eur J Pediatr 155(1):S4–S5

    Article  Google Scholar 

  • Hennermann JB, Berger JM, Grieben U et al (2012) Prediction of long-term outcome in glycine encephalopathy: a clinical survey. J Inherit Metab Dis 35:253–261

    Article  CAS  Google Scholar 

  • Hoffmann B, Helbling C, Schadewaldt P, Wendel U (2006) Impact of longitudinal plasma leucine levels on the intellectual outcome in patients with classic MSUD. Pediatr Res 59:17–20

    Article  CAS  Google Scholar 

  • Hoover-Fong JE, Shah S, van Hove JL, Applegarth D, Toone J, Hamosh A (2004) Natural history of nonketotic hyperglycinaemia in 65 patients. Neurology 63:1847–1853

    Article  CAS  Google Scholar 

  • Kaiser-Kupfer MI, Caruso RC, Valle D, Reed GF (2004) Use of an arginine-restricted diet to slow progression of visual loss in patients with gyrate atrophy. Arch Ophthamol 122:982–984

    Article  Google Scholar 

  • Koch R, Hanley W, Levy H et al (2003) The maternal phenylketonuria international study: 1984–2002. Pediatrics 112:1523–1529

    PubMed  Google Scholar 

  • Koning D, Klomp LW, van Oppen AC et al (2004) Prenatal and early postnatal treatment in 3-phosphoglycerate-dehydrogenase deficiency. Lancet 364:2221–2222

    Article  Google Scholar 

  • Lindell A, Denneberg T, Granerus G (1997) Studies on renal function in patients with cystinuria. Nephron 77:76–85

    Article  CAS  Google Scholar 

  • Masurel-Paulet A, Poggi-Bach J, Rolland MO et al (2008) NTBC treatment in tyrosinemia type I: long-term outcome in French patients. J Inherit Metab Dis 31:81–87

    Article  CAS  Google Scholar 

  • Mazariegos GV, Morton DH, Sindhi R et al (2012) Liver transplantation for classical maple syrup urine disease: long-term follow-up in 37 patients and comparative United Network for Organ Sharing experience. J Pediatr 160:116–121

    Article  Google Scholar 

  • Mudd SH (2011) Hypermethioninemias of genetic and non-genetic origin: a review. Am J Med Genet C, Semin Med Genet 157:3–32

    Article  CAS  Google Scholar 

  • Mudd SH, Skovby F, Levy HL et al (1985) The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet 37:1–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muntau AC, Röschinger W, Habich M et al (2003) Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med 347:2122–2132

    Article  Google Scholar 

  • Pietz J, Kreis R, Rupp A et al (1999) Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest 103:1169–1178

    Article  CAS  Google Scholar 

  • Prasad AN, Rupar CA, Prasad C (2011) Methylenetetrahydrofolate reductase (MTHFR) deficiency and infantile epilepsy. Brain Dev 33:758–769

    Article  Google Scholar 

  • Staufner C, Lindner M, Dionisi-Vici C, Freisinger P, Dobbelaere D, Douillard C, Makhseed N, Straub BK, Kahrizi K, Ballhausen D, la Marca G, Kölker S, Haas D, Hoffmann GF, Grünert SC, Blom HJ (2016) Adenosine kinase deficiency: expanding the clinical spectrum and evaluating therapeutic options. J Inherit Metab Dis 39:273–283

    Article  CAS  Google Scholar 

  • Strauss KA, Morton DH, Puffenberger EG et al (2007) Prevention of brain disease from severe 5,10-methylenetetrahydrofolate reductase deficiency. Mol Genet Metab 91:165–175

    Article  CAS  Google Scholar 

  • Tomoeda K, Awata H, Matsuura T et al (2000) Mutations in the 4-hydroxyphenylpyruvic acid dioxygenase gene are responsible for tyrosinemia type III and hawkinsinuria. Mol Genet Metab 71:506–510

    Article  CAS  Google Scholar 

  • Van Spronsen FJ, van Wegberg AM, Ahring K et al (2017) Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol 5:743–756. https://doi.org/10.1016/S2213-8587(16)30320-5

    Article  PubMed  Google Scholar 

  • Veldman A, Santamaria-Araujo JA, Sollazzo S et al (2010) Successful treatment of molybdenum cofactor deficiency type A with cPMP. Pediatrics 125:e1249–e1254

    Article  Google Scholar 

  • Yang H, Al-Hertani W, Cyr D et al (2017) Hypersuccinylacetonaemia and normal liver function in maleylacetoacetate isomerase deficiency. J Med Genet 54:241–247. https://doi.org/10.1136/jmedgenet-2016-104289. PMID: 27876694

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kölker .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kölker, S., Hoffmann, G.F. (2019). Aminoazidopathien. In: Hoffmann, G., Lentze, M., Spranger, J., Zepp, F., Berner, R. (eds) Pädiatrie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54671-6_71-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54671-6_71-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54671-6

  • Online ISBN: 978-3-642-54671-6

  • eBook Packages: Springer Referenz Medizin

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Aminoazidopathien
    Published:
    11 January 2019

    DOI: https://doi.org/10.1007/978-3-642-54671-6_71-2

  2. Original

    Aminoacidopathien
    Published:
    20 April 2015

    DOI: https://doi.org/10.1007/978-3-642-54671-6_71-1