Skip to main content

Knochenwachstum

  • Living reference work entry
  • First Online:
Orthopädie und Unfallchirurgie

Part of the book series: Springer Reference Medizin ((SRM))

  • 217 Accesses

Zusammenfassung

Das Skelettsystem des Erwachsenen ist vorwiegend verknöchert, während es bei Kindern zu einem großen Anteil aus Knorpelgewebe besteht. Knochen haben verschiedenste Funktionen: Sie dienen als passiver Teil des Bewegungsapparats, schützen die inneren Organe und sind Ort der Blutbildung. Im Kindesalter besitzt das Skelett zusätzlich Wachstumseigenschaften und Korrekturpotenziale. Die Knochen können makroskopisch aufgrund von Form, Funktion und Bildungsart voneinander unterschieden und eingeteilt werden. Auf mikroskopischer Ebene finden sich Knochenzellen, die für das Knochenwachstum und die Knochenumbildung eine Schlüsselrolle spielen. Sowohl in der Entwicklung der Knochen als auch im Wachstum sind dieselben Knochenzellen zu finden. Um die biologischen Hintergründe von Knochenheilung und Pathogenese verstehen zu können, ist ein Grundverständnis des Knochenaufbaus und dessen Entwicklung von fundamentaler Bedeutung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Andrzejewska A, Lukomska B, Janowski M (2019) Concise review: mesenchymal stem cells: from roots to boost. Stem Cells 37(7):855–864

    Article  PubMed  PubMed Central  Google Scholar 

  • Bielby R, Jones E, McGonagle D (2007) The role of mesenchymal stem cells in maintenance and repair of bone. Injury 38(1 Suppl):S26–S32

    Article  PubMed  Google Scholar 

  • Boyce BF, Xing L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthr Res Ther 9(1):S1

    Article  CAS  Google Scholar 

  • Boyce BF, Hughes DE, Wright KR, Xing L, Dai A (1999) Recent advances in bone biology provide insight into the pathogenesis of bone diseases. Lab Invest 79(2):83–94

    CAS  PubMed  Google Scholar 

  • Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423(6937):337–342

    Article  CAS  PubMed  Google Scholar 

  • Caruccio NC, Martinez-Lopez A, Harris M, Dvorak L, Bitgood J, Simandl BK et al (1999) Constitutive activation of Sonic Hedgehog signaling in the chicken mutant talpid2: Shh-independent outgrowth and polarizing activity. Dev Biol 212(1):137–149

    Article  CAS  PubMed  Google Scholar 

  • Crane JL, Zhao L, Frye JS, Xian L, Qiu T, Cao X (2013) IGF-1 signaling is essential for differentiation of mesenchymal stem cells for peak bone mass. Bone Res 1:186–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Wu A, Li P, Li G, Qin L, Song H et al (2016) Yap1 regulates multiple steps of chondrocyte differentiation during skeletal development and bone repair. Cell Rep 14(9):2224–2237

    Article  CAS  PubMed  Google Scholar 

  • Ducy P, Karsenty G (1998) Genetic control of cell differentiation in the skeleton. Curr Opin Cell Biol 10(5):614–619

    Article  CAS  PubMed  Google Scholar 

  • Dy P, Wang W, Bhattaram P, Wang Q, Wang L, Ballock RT et al (2012) Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev Cell 22(3):597–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filvaroff E, Derynck R (1998) Bone remodelling: a signalling system for osteoclast regulation. Curr Biol 8(19):R679–R682

    Article  CAS  PubMed  Google Scholar 

  • Garg P, Mazur MM, Buck AC, Wandtke ME, Liu J, Ebraheim NA (2017) Prospective review of mesenchymal stem cells differentiation into osteoblasts. Orthop Surg 9(1):13–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J (2019) Mesenchymal stem cells for regenerative medicine. Cells 8(8):886

    Article  CAS  PubMed Central  Google Scholar 

  • Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA et al (2013) Super-enhancers in the control of cell identity and disease. Cell 155(4):934–947

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Ha D-H, Lee E-J, Park JH, Shim JH, Ahn T-K et al (2017) Safety and tolerability of intradiscal implantation of combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain: 1-year follow-up of a phase I study. Stem Cell Res Ther 8(1):262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kylmaoja E, Nakamura M, Tuukkanen J (2016) Osteoclasts and remodeling based bone formation [Internet]. https://www.ingentaconnect.com/contentone/ben/cscr/2016/00000011/00000008/art00005. Zugegriffen am 14.11.2019

  • Li J, Dong S (2016) The signaling pathways involved in chondrocyte differentiation and hypertrophic differentiation [Internet]. Stem Cells Int. https://www.hindawi.com/journals/sci/2016/2470351/abs/. Zugegriffen am 14.11.2019

  • Liu C-F, Lefebvre V (2015) The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Res 43(17):8183–8203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomaga MA, Yeh W-C, Sarosi I, Duncan GS, Furlonger C, Ho A et al (1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 13(8):1015–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto T, Suda T (2003) Differentiation and function of osteoclasts. Keio J Med 52(1):1–7

    Article  PubMed  Google Scholar 

  • Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR et al (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29

    Article  CAS  PubMed  Google Scholar 

  • Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-hora M, Feng JQ et al (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17(10):1231–1234

    Article  CAS  PubMed  Google Scholar 

  • Naski MC, Colvin JS, Coffin JD, Ornitz DM (1998) Repression of Hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 125(24):4977–4988

    CAS  PubMed  Google Scholar 

  • Ossifikation (2019) Wikipedia [Internet]. https://de.wikipedia.org/w/index.php?title=Ossifikation&oldid=192807231. Zugegriffen am 10.12.2019

  • Rutkovskiy A, Stensløkken K-O, Vaage IJ (2016) Osteoblast differentiation at a glance. Med Sci Monit Basic Res 22:95–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Simonet W, Lacey D, Dunstan C, Kelley M, Chang M, Lüthy R et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89(2):309–319

    Article  CAS  PubMed  Google Scholar 

  • Song J, Lee M, Kim D, Han J, Chun C-H, Jin E-J (2013) MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity. Biochem Biophys Res Commun 431(2):210–214

    Article  CAS  PubMed  Google Scholar 

  • Tosounidis T, Kontakis G, Nikolaou V, Papathanassopoulos A, Giannoudis PV (2009) Fracture healing and bone repair: an update. Trauma 11(3):145–156

    Article  Google Scholar 

  • Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI et al (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 76(4):579–592

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yuan X, Yang S (2013) IFT80 is essential for chondrocyte differentiation by regulating Hedgehog and Wnt signaling pathways. Exp Cell Res 319(5):623–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH et al (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153(2):307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xian L, Wu X, Pang L, Lou M, Rosen CJ, Qiu T et al (2012) Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med 18(7):1095–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17(10):1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan B, Zhang Z, Jin D, Cai C, Jia C, Liu W et al (2016) mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat Commun 7(1):1–15

    Google Scholar 

  • Yasuda H, Shima N, Nakagawa N, Mochizuki S-I, Yano K, Fujise N et al (1998) Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139(3):1329–1337

    Article  PubMed  Google Scholar 

  • Ye L, Fan Z, Yu B, Chang J, Al Hezaimi K, Zhou X et al (2012) Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell 11(1):50–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Xu L, Xu L, Xu Q, Karsenty G, Chen CD (2015) Histone demethylase JMJD3 is required for osteoblast differentiation in mice. Sci Rep 5:13418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q (2007) Osteoclast differentiation and gene regulation. Front Biosci 12(1):2519

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Sommer .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sommer, N., Marek, R. (2020). Knochenwachstum. In: Engelhardt, M., Raschke, M. (eds) Orthopädie und Unfallchirurgie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54673-0_160-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54673-0_160-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54673-0

  • Online ISBN: 978-3-642-54673-0

  • eBook Packages: Springer Referenz Medizin

Publish with us

Policies and ethics