Skip to main content

Leaf Area Index: Advance on the Ground-Based Measurement

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Observation and Measurement of Ecohydrological Processes

Part of the book series: Ecohydrology ((ECOH))

  • 243 Accesses

Abstract

Leaf area index (LAI) is a primary parameter for vegetation structure and is one of the important products from remote sensing data. Ground-based LAI estimation of LAI is the important activity for global satellite product validation. In this chapter, the main methods on LAI measurement were reviewed, and the emphasis was put on the new advanced method on LAI measurement. We present two new instruments (LAINet and LAISmart) designed by Beijing Normal University which use either modern communication network or mobile computing platform to obtain LAI with high efficiency and low cost. LAINet is an instrument constructed on the base of wireless sensor network, and the principle of LAINet is capturing sunlight transmittance using a series of wireless sensors in different sun zenith angles. And LAI is estimated from the sensed transmittances. Borrowing the wireless communication technique, the measured data can be transferred to remote computer server, thus, LAINet can reduce the cost of field data collection. LAISmart is a mobile application deployed on the smartphone, and the LAI is calculated by the classification of captured image. By integration of capturing images and real time computing of smartphone, LAISmart provide automatic measurement method compared with the traditional digital hemispherical photography method. In the end of this chapter, the prospect of the methods on the LAI ground-based measurement is summarized, and it is pointed out that the integration of passive and active optical signal to produce low cost and light weight and thus affordable and portable device may be a promising tendency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • D. Arias, J. Calvo-Alvarado, A. Dohrenbusch, Calibration of LAI-2000 to estimate leaf area index (LAI) and assessment of its relationship with stand productivity in six native and introduced tree species in Costa Rica. For. Ecol. Manag. 247(1–3), 185–193 (2007)

    Article  Google Scholar 

  • D.T. Booth, S.E. Cox, C. Fifield, M. Phillips, N. Willlamson, Image analysis compared with other methods for measuring ground cover. Arid Land Res. Manag. 19(2), 91–100 (2005)

    Article  Google Scholar 

  • N.J.J. Bréda, Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J. Exp. Bot. 54(392), 2403–2417 (2003)

    Article  Google Scholar 

  • J.M. Chen, Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agric. For. Meteorol. 80(2–4), 135–163 (1996)

    Article  Google Scholar 

  • J.M. Chen, T.A. Black, Measuring leaf area index of plant canopies with branch architecture. Agric. For. Meteorol. 57(1–3), 1–12 (1991)

    Article  Google Scholar 

  • J.M. Chen, T.A. Black, Defining leaf area index for non-flat leaves. Plant Cell Environ. 15(4), 421–429 (1992)

    Article  Google Scholar 

  • S.D. Culvenor, J.G. Newnham, A. Mellor, C.N. Sims, A. Haywood, Automated in-situ laser scanner for monitoring forest leaf area index. Sensors 14(8), 14994–15008 (2014)

    Article  Google Scholar 

  • A. Escolà, S. Planas, J.R. Rosell, J. Pomar, F. Camp, F. Solanelles, F. Gracia, J. Llorens, E. Gil, Performance of an ultrasonic ranging sensor in apple tree canopies. Sensors 11(3), 2459–2477 (2011)

    Article  Google Scholar 

  • S. Fuentes, R.D. Bei, C. Pozo, S. Tyerman, Development of a smartphone application to characterise temporal and spatial canopy architecture and leaf area index for grapevines. Wine Viticult. J. 27(6), 56–60 (2012)

    Google Scholar 

  • S. Garrigues, R. Lacaze, F. Baret, J.T. Morisette, M. Weiss, J.E. Nickeson, R. Fernandes, S. Plummer, N.V. Shabanov, R.B. Myneni, Y. Knyazikhin, W. Yang, Validation and intercomparison of global Leaf Area Index products derived from remote sensing data. J. Geophys. Res. Biogeosci. 113(G2), G02028 (2008)

    Article  Google Scholar 

  • N.S. Goel, Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data. Remote Sens. Rev. 4(1), 1–212 (1988)

    Article  Google Scholar 

  • J. Goudriaan, The bare bones of leaf-angle distribution in radiation models for canopy photosynthesis and energy exchange. Agric. For. Meteorol. 43(2), 155–169 (1988)

    Article  Google Scholar 

  • A. Griebel, L.T. Bennett, D.S. Culvenor, G.J. Newnham, S.K. Arndt, Reliability and limitations of a novel terrestrial laser scanner for daily monitoring of forest canopy dynamics. Remote Sens. Environ. 166, 205–213 (2015)

    Article  Google Scholar 

  • Z. Guang, M. Lixia, J.U.H. Eitel, H. Wei, T.S. Magney, L.M. Moskal, L. Mingshi, Retrieving directional gap fraction, extinction coefficient, and effective leaf area index by incorporating scan angle information from discrete aerial lidar data. IEEE Trans. Geosci. Remote Sens. 55(1), 577–590 (2017)

    Article  Google Scholar 

  • V. Haverd, J.L. Lovell, M. Cuntz, D.L.B. Jupp, G.J. Newnham, W. Sea, The canopy semi-analytic Pgap and radiative transfer (CanSPART) model: formulation and application. Agric. For. Meteorol. 160, 14–35 (2012)

    Article  Google Scholar 

  • J. Heiskanen, L. Korhonen, J. Hietanen, P.K.E. Pellikka, Use of airborne lidar for estimating canopy gap fraction and leaf area index of tropical montane forests. Int. J. Remote Sens. 36(10), 2569–2583 (2015)

    Article  Google Scholar 

  • A.R.G. Lang, Simplified estimate of leaf area index from transmittance of the sun’s beam. Agric. For. Meteorol. 41(3–4), 179–186 (1987)

    Article  Google Scholar 

  • X. Li, G. Cheng, S. Liu, Q. Xiao, M. Ma, R. Jin, T. Che, Q. Liu, W. Wang, Y. Qi, J. Wen, H. Li, G. Zhu, J. Guo, Y. Ran, S. Wang, Z. Zhu, J. Zhou, X. Hu, Z. Xu, Heihe watershed allied telemetry experimental research (HiWATER): scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 94(8), 1145–1160 (2013)

    Article  Google Scholar 

  • D. Liping, K. Moe, T.L. van Zyl, Earth observation sensor web: an overview. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 3(4), 415–417 (2010)

    Article  Google Scholar 

  • J. Llorens, E. Gil, J. Llop, A. Escolà, Ultrasonic and LIDAR sensors for electronic canopy characterization in Vineyards: advances to improve pesticide application methods. Sensors 11(2), 2177–2194 (2011)

    Article  Google Scholar 

  • S.N. Martens, S.L. Ustin, R.A. Rousseau, Estimation of tree canopy leaf area index by gap fraction analysis. For. Ecol. Manag. 61(1–2), 91–108 (1993)

    Article  Google Scholar 

  • E.G. Mason, M. Diepstraten, G.L. Pinjuv, J.-P. Lasserre, Comparison of direct and indirect leaf area index measurements of Pinus radiata D. Don. Agric. For. Meteorol. 166–167, 113–119 (2012)

    Article  Google Scholar 

  • F. Mazzetto, A. Calcante, A. Mena, A. Vercesi, Integration of optical and analogue sensors for monitoring canopy health and vigour in precision viticulture. Precis. Agric. 11(6), 636–649 (2010)

    Article  Google Scholar 

  • R. Morais, M.A. Fernandes, S.G. Matos, C. Serôdio, P.J.S.G. Ferreira, M.J.C.S. Reis, A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture. Comput. Electron. Agric. 62(2), 94–106 (2008)

    Article  Google Scholar 

  • T. Nilson, A theoretical analysis of the frequency of gaps in plant stands. Agric. Meteorol. 8, 25–38 (1971)

    Article  Google Scholar 

  • N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  • J. Pisek, Y. Ryu, M. Sprintsin, L. He, A.J. Oliphant, L. Korhonen, J. Kuusk, A. Kuusk, R. Bergstrom, J. Verrelst, K. Alikas, Retrieving vegetation clumping index from Multi-angle Imaging SpectroRadiometer (MISR) data at 275(m) resolution. Remote Sens. Environ. 138, 126–133 (2013)

    Article  Google Scholar 

  • Y. Qu, W. Han, L. Fu, C. Li, J. Song, H. Zhou, Y. Bo, J. Wang, LAINet – a wireless sensor network for coniferous forest leaf area index measurement: design, algorithm and validation. Comput. Electron. Agric. 108, 200–208 (2014)

    Article  Google Scholar 

  • Y. Qu, J. Meng, H. Wan, Y. Li, Preliminary study on integrated wireless smart terminals for leaf area index measurement. Comput. Electron. Agric. 129, 56–65 (2016)

    Article  Google Scholar 

  • Y. Qu, J. Wang, J. Song, J. Wang, Potential and limits of retrieving conifer leaf area index using smartphone-based method. Forests 8(6), 217 (2017)

    Article  Google Scholar 

  • M. Renslow, P. Greenfield, T. Guay, Evaluation of multi-return LIDAR for forestry applications. Report prepared for The Inventory and Monitoring Steering Committee of the USDA Forest Service. US Department of Agriculture Forest Service – Engineering. Remote Sensing Applications Center, November 2000. RSAC-2060/4810-LSP-0001-RPT1. (2000)

    Google Scholar 

  • P.W. Rundel, E.A. Graham, M.F. Allen, J.C. Fisher, T.C. Harmon, Environmental sensor networks in ecological research. New Phytol. 182(3), 589–607 (2009)

    Article  Google Scholar 

  • T. Sasaki, J. Imanishi, K. Ioki, Y. Morimoto, K. Kitada, Estimation of leaf area index and canopy openness in broad-leaved forest using an airborne laser scanner in comparison with high-resolution near-infrared digital photography. Landsc. Ecol. Eng. 4(1), 47–55 (2008)

    Article  Google Scholar 

  • M. Schirrmann, A. Hamdorf, A. Giebel, K.H. Dammer, A. Garz, A mobile sensor for leaf area index estimation from canopy light transmittance in wheat crops. Biosyst. Eng. 140, 23–33 (2015)

    Article  Google Scholar 

  • H. Tang, R. Dubayah, A. Swatantran, M. Hofton, S. Sheldon, D.B. Clark, B. Blair, Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica. Remote Sens. Environ. 124, 242–250 (2012)

    Article  Google Scholar 

  • J.M. Welles, Some indirect methods of estimating canopy structure. Remote Sens. Rev. 5(1), 31–43 (1990)

    Article  Google Scholar 

  • K.R. Whitford, I.J. Colquhoun, A.R.G. Lang, B.M. Harper, Measuring leaf area index in a sparse eucalypt forest: a comparison of estimates from direct measurement, hemispherical photography, sunlight transmittance and allometric regression. Agric. For. Meteorol. 74(3–4), 237–249 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghua Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Qu, Y. (2018). Leaf Area Index: Advance on the Ground-Based Measurement. In: Li, X., Vereecken, H. (eds) Observation and Measurement of Ecohydrological Processes. Ecohydrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47871-4_11-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47871-4_11-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47871-4

  • Online ISBN: 978-3-662-47871-4

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Leaf Area Index: Advance on the Ground-Based Measurement
    Published:
    11 August 2018

    DOI: https://doi.org/10.1007/978-3-662-47871-4_11-2

  2. Original

    Leaf Area Index: Advance on the Ground-Based Measurement
    Published:
    13 June 2018

    DOI: https://doi.org/10.1007/978-3-662-47871-4_11-1