Skip to main content

Chemical Affinity Tensor in Coupled Problems of Mechanochemistry

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics

Synonyms

Chemical aflnity tensor; Chemical potential tensor; Chemical reaction front kinetics; Chemomechanics; Configurational force; Driving force; Mechanochemistry; Sharp interface

Definitions

An expression of a chemical affinity tensor is given for a stress-affected chemical reaction, and a thermodynamically sound kinetic equation for a chemical reaction front propagation in a solid is formulated with a normal component of the chemical affinity tensor as a driving force.

Introduction

Mechanochemical coupling – interconnections between chemical reactions and mechanical stresses – has been intensively studied, recognized, and well-documented during last decades. Note that two terms are used in the context of discussions of interconnections between chemistry and mechanics: mechanochemistry and chemomechanics. The word “mechanochemistry” refers to chemical reactions affected by mechanical actions, and it is often specialized for the reaction activated by grinding or ball-milling. Then...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abeyaratne R, Knowles JK (2006) Evolution of phase transitions. A continuum theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Boldyrev VV (2006) Mechanochemistry and mechanical activation of solids. Russ Chem Rev 75:177–189

    Article  Google Scholar 

  • Boldyrev VV (2018) Mechanochemical processes with the reaction-induced mechanical activation. Chemo-mechanochemical effect. Russ Chem Bull 67:933–948

    Article  Google Scholar 

  • Bowen RM (1967) Toward a thermodynamics and mechanics of mixtures. Arch Rat Mech Anal 24:370–403

    Article  MathSciNet  MATH  Google Scholar 

  • Bower AF, Guduru PR, Sethuraman VA (2011) A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J Mech Phys Solids 59(4):804–828

    Article  MathSciNet  MATH  Google Scholar 

  • Bower AF, Guduru PR, Chason E (2015) Analytical solutions for composition and stress in spherical elastic-plastic lithium-ion electrode particles containing a propagating phase boundary. Int J Solids Struct 69–70:328–342

    Article  Google Scholar 

  • Brassart L, Suo Z (2013) Reactive flow in solids. J Mech Phys Solids 61(1):61–77

    Article  MathSciNet  Google Scholar 

  • Burebi YM, Jia Z, Qu SX (2019) A chemo-mechanical model for fully-coupled lithiation reaction and stress generation in viscoplastic lithiated silicon. Sci China Technol Sci 62:1365–1374

    Article  Google Scholar 

  • Buttner CC, Zacharias M (2006) Retarded oxidation of si nanowires. Appl Phys Lett 89:263106

    Article  Google Scholar 

  • Chan YC, Yang D (2010) Failure mechanisms of solder interconnects under current stressing in advanced electronic packages. Prog Mater Sci 55:428

    Article  Google Scholar 

  • Cheng YC, Wang YT, Hsu FC, Lu FC, Wu CL, Lin MT (2015) Effect of loading stress on the growth of Cn/Sn intermetallic compounds at high temperatures. J Electron Mater 44:604–611

    Article  Google Scholar 

  • Cui Z, Gao Z, Qu J (2012) A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J Mech Phys Solids 60:1280–1295

    Article  MathSciNet  Google Scholar 

  • Cui Z, Gao F, Qu J (2013) Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries. J Mech Phys Solids 61:293–310

    Article  MathSciNet  Google Scholar 

  • Dal H, Miehe C (2015) Computational electro-chemo-mechanics of lithium-ion battery electrodes at finite strains. Comput Mech 55(2):303–325

    Article  MathSciNet  MATH  Google Scholar 

  • De Donder T, Van Rysselberghe P (1936) Thermodynamic theory of affinity: a book of principles. Oxford University Press, Oxford

    Google Scholar 

  • Deal E, Grove A (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36:3770–3778

    Article  Google Scholar 

  • Eshelby J (1975) The elastic energy–momentum tensor. Elasticity 5:321–335

    Article  MathSciNet  MATH  Google Scholar 

  • Evans HE, Norfolk DJ, Swan T (1978) Perturbation of parabolic kinetics resulting from the accumulation of stress in protective oxide layers. J Electrochem Soc 125:1180–1185

    Article  Google Scholar 

  • Fang X, Li Y, Yue M, Feng X (2019) Chemo-mechanical coupling effect on high temperature oxidation: a review. Sci China Tech Sci 62:1297–1321

    Article  Google Scholar 

  • Freidin AB (2009) On chemical reaction fronts in nonlinear elastic solids. In: Proceedings of XXXVII summer school–conference advanced problems in mechanics (APM-2009), St. Petersburg (Repino), 30 June–5 July 2009. Institute for Problems in Mechanical Engineering of Russian Academy of Sciences, pp 231–237

    Google Scholar 

  • Freidin AB (2013) Chemical affinity tensor and stress-assist chemical reactions front propagation in solids. In: ASME 2013 international mechanical engineering congress and exposition, San Diego, 13–21 Nov 2013

    Google Scholar 

  • Freidin AB (2015) On a chemical affinity tensor for chemical reactions in deformable solids. Mech Solids 50:260–285

    Article  Google Scholar 

  • Freidin AB, Sharipova LL (2018) Forbidden strains and stresses in mechanochemistry of chemical reaction fronts. In: Altenbach H, Pouget J, Rousseau M, Collet B, Michelitsch T (eds) Generalized models and non-classical approaches in complex materials 1. Advanced structured materials, vol 89. Springer, Cham, pp 335–348

    Chapter  Google Scholar 

  • Freidin AB, Vilchevskaya EN, Korolev IK (2014) Stress-assist chemical reactions front propagation in deformable solids. Int J Eng Sci 83:57–75

    Article  MathSciNet  MATH  Google Scholar 

  • Freidin A, Morozov N, Petrenko S, Vilchevskaya E (2016a) Chemical reactions in spherically symmetric problems of mechanochemistry. Acta Mech 227(1):43–56

    Article  MathSciNet  MATH  Google Scholar 

  • Freidin AB, Korolev IK, Aleshchenko SP, Vilchevskaya EN (2016b) Chemical affinity tensor and chemical reaction front propagation: theory and FE-simulations. Int J Fract 202:245–259

    Article  Google Scholar 

  • Gibbs J (1948) The collected works of J.W. Gibbs, Vol. 1: Thermodynamics. Yale University Press, London

    Google Scholar 

  • Glansdorff P, Prigogine I (1971) Thermodynamic theory of stability and fluctuation. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Grinfeld M (1980) On conditions of thermodynamic equilibrium of phases of a nonlinearly elastic material. Sov Math Dokl 251:824–827

    Google Scholar 

  • Grinfeld MA (1990) Continuum mechanics methods in the theory of phase transformations (in Russian). Nauka, Moscow

    Google Scholar 

  • Grinfeld M (1991) Thermodynamic methods in the theory of heterogeneous systems. Longman, New York

    Google Scholar 

  • Gurtin M (1983) Two-phase deformations of elastic solids. Arch Rat Mech Anal 84:1–29

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin M (2000) Configurational forces as basic concepts of continuum physics. Springer, New York

    MATH  Google Scholar 

  • Haftbaradaran H, Song J, Curtin W, Gao H (2011) Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration. J Power Sources 196:361–370

    Article  Google Scholar 

  • Heidemeyer H, Single C, Zhou F, Prins FE, Kern D, Plies E (2000) Self-limiting and pattern dependent oxidation of silicon dots fabricated on silicon-on-insulator material. J Appl Phys 87:4580–4585

    Article  Google Scholar 

  • Huang CK, Jaccodine RJ, Butler SR (1987) Stress effect on the oxidation of silicon. In: Kapoor VJ, Hankins KT (eds) Silicon nitride and silicon dioxide thin insulating film, vol 87–10. The Electrochemical Society, Pennington, pp 343–349

    Google Scholar 

  • Huang S, Fan F, Li J, Zhang S, Zhu T (2013) Stress generation during lithiation of high-capacity electrode particlesin lithium ion batteries. Acta Mater 61:4354–4364

    Article  Google Scholar 

  • Jacobson N, Opilab E, Leeb K (1981) Oxidation and corrosion of ceramics and ceramic matrix composites. Arch Rat Mech Anal 77:143–177

    Article  Google Scholar 

  • Jacobson N, Fox D, Opilab E (1998) High temperature oxidation of ceramic matrix composites. Pure Appl Chem 70(2):493–500

    Article  Google Scholar 

  • James R (2001) Finite deformations by mechanical twinning. Curr Opin Solid State Mater Sci 5:301–309

    Article  Google Scholar 

  • Jia Z, Li T (2015) Stress-modulated driving force for lithiation reaction in hollow nano-anodes. J Power Sources 275:866–876

    Article  Google Scholar 

  • Kao D, McVitie J, Nix W, Saraswat K (1985) Two dimensional silicon oxidation experiment and theory. In: IEDM Tech Dig, vol 275, pp 388–391

    Google Scholar 

  • Kao D, McVitie J, Nix W, Saraswat K (1987) Two dimensional thermal oxidation of silicon–I. Experiments. IEEE Trans Electron Devices ED-34:1008–1017

    Google Scholar 

  • Kao D, McVitie J, Nix W, Saraswat K (1988) Two dimensional thermal oxidation of silicon–II. Modeling stress effect in wet oxides. IEEE Trans Electron Devices ED-35:25–37

    Article  Google Scholar 

  • Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163:1003–1039

    Article  Google Scholar 

  • Kienzler R, Herrmann G (2000) Mechanics in material space with application to defect and fracture mechanics. Springer, Berlin

    MATH  Google Scholar 

  • Knowles J (1979) On the dissipation associated with equilibrium shocks in finite elasticity. J Elast 9:131–158

    Article  MathSciNet  MATH  Google Scholar 

  • Knyazeva AG (2003) Cross effects in solid media with diffusion. J Appl Mech Tech Phys 44(3):373–384

    Article  MathSciNet  MATH  Google Scholar 

  • Krzeminski C, Han XL, Larrieu G (2012) Understanding of the retarder oxidation effects in silicon nanostructures. Appl Phys Lett 100:263111

    Article  Google Scholar 

  • Larche F, Cahn J (1984) The interactions of composition and stress in crystalline solids. J Res Natl Bur Stand 89:467–500

    Article  Google Scholar 

  • Lee LM, Mohamad AA (2013) Interfacial reaction of sn-ag-cu lead-free solder alloy on cu. A review. Adv Mater Sci Eng 2013:123–697

    Google Scholar 

  • Levitas V, Attariani H (2013) Anisotropic compositional expansion and chemical potential for amorphous lithiated silicon under stress tensor. Sci Rep 3:1615

    Article  Google Scholar 

  • Loeffel K, Anand L (2011) A chemo-thermo-mechanically coupled theory for elastic-viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction. Int J Plast 27:1409–1431

    Article  MATH  Google Scholar 

  • Loeffel K, Anand L (2013) On modeling the oxidation of high-temperature alloys. Acta Mater 61:399–424

    Article  Google Scholar 

  • Marcus R, Sheng T (1982) The oxidation of shaped silicon surfaces. J Electrochem Soc 129(6):1278–1282

    Article  Google Scholar 

  • Maugin G (2011) Configurational forces. Thermomechanics, physics, mathematics, and numerics. Chapman & Hall/CRC Press, Boca Raton

    Google Scholar 

  • McDowell M, Ryu I, Lee S, Wang C, Nix W, Cui Y (2012) Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv Mater 24:6034–6041

    Article  Google Scholar 

  • McDowell MT, Lee SW, Harris JT, Korgel BA, Wang CM, Nix WD, Cui Y (2013a) In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett 13:758–764

    Article  Google Scholar 

  • McDowell MT, Lee SW, Nix WD, Cui Y (2013b) 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv Mater 25:4966–4985

    Article  Google Scholar 

  • McDowell M, Xia S, TZhu (2016) The mechanics of large-volume-change transformations in high-capacity battery materials. Extreme Mech Lett 9:480–494

    Article  Google Scholar 

  • Mihalyi A, Jaccodine RJ, Delph TJ (1999) Stress effects in the oxidation of planar silicon substrates. Appl Phys Lett 74(14):1981–1983

    Article  Google Scholar 

  • Morozov A, Freidin A, Müller WH, Hauck T, Schmadlak I (2018a) Modeling reaction front propagation of intermetallic compounds by using isogeometric analysis. In: 2018 19th international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (EuroSimE 2018)

    Google Scholar 

  • Morozov A, Khakalo S, Balobanov V, Freidin AB, Müller WH, Niiranen J (2018b) Modeling chemical reaction front propagation by using isogeometric analysis. Technische Mechanik 38:73–90

    Google Scholar 

  • Morozov A, Freidin A, Müller WH, Semencha A, Tribunskiy M (2019) Modeling temperature dependent chemical reaction of intermetallic compound growth. In: 2019 20th international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (EuroSimE 2019)

    Google Scholar 

  • Muhlstein C, Ritchie R (2003) High-cycle fatigue of micron-scale polycrystalline silicon films: fracture mechanics analyses of the role of the silica/silicon interface. Int J Fract 119/120:449–474

    Article  Google Scholar 

  • Muhlstein C, Stach E, Ritchie R (2002) A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading. Acta Mater 50:3579–3595

    Article  Google Scholar 

  • Müller W, Vilchevskaya E, Freidin A (2015) Structural changes in micro-materials: phenomenology, theory, applications, and simulations. Lect Notes TICMI 16:2–74

    MathSciNet  Google Scholar 

  • Novozhilov VV (1958) Elasticity btheory (in Russian). Sudpromgiz, Leningrad

    Google Scholar 

  • Poluektov M, Figiel L (2019) A numerical method for finite-strain mechanochemistry with localised chemical reactions treated using a Nitsche approach. Comput Mech 63:885–911

    Article  MathSciNet  MATH  Google Scholar 

  • Poluektov M, Freidin AB, Figiel L (2018) Modelling stress-affected chemical reactions in non-linear viscoelastic solids with application to lithiation reaction in spherical Si particles. Int J Eng Sci 128:44–62

    Article  MathSciNet  MATH  Google Scholar 

  • Poluektov M, Freidin AB, Figiel L (2019) Micromechanical modelling of mechanochemical processes in heterogeneous materials. Model Simul Mater Sci Eng 27:084005

    Article  Google Scholar 

  • Prigogine I, Defay R (1954) Chemical thermodynamics. Longmans, Green, London

    Google Scholar 

  • Rafferty CS, Dutton RW (1989) Plastic analysis of cylinder oxidation. Appl Phys Lett 54:1815–1817

    Article  Google Scholar 

  • Rao VS, Hughes TJR (2000) On modelling thermal oxidation of silicon. I: Theory. Int J Numer Methods Eng 47:341–358

    Article  MATH  Google Scholar 

  • Rusanov AI (2005) Surface thermodynamics revisited. Surf Sci Rep 58:111–239

    Article  Google Scholar 

  • Rusanov AI (2006) Thermodynamic foundations of mechanochemistry. Saint-Petersburg, Nauka

    Google Scholar 

  • Sethuramana V, Chonb M, Shimshakb M, Srinivasana V, Guduru P (2010) In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J Power Sources 195:5062–5066

    Article  Google Scholar 

  • Sethuramana V, Winkle NV, Abraham D, Bower A, Guduru P (2012) Real-time stress measurements in lithium-ion battery negative-electrodes. J Power Sources 206:334–342

    Article  Google Scholar 

  • Sutardja P, Oldham W (1988) Modeling of stress effects in silicon oxidation. IEEE Trans Electron Devices 36(11):2415–2421

    Article  Google Scholar 

  • Truesdell C (1969) Rational thermodynamics. McGraw-Hill, London

    MATH  Google Scholar 

  • Truskinovsky LM (1982) Equilibrium phase interfaces. Sov Phys Dokl 27:551–553

    Google Scholar 

  • van Havenbergh K, Turner S, Marx N, van Tendeloo G (2016) The mechanical behavior during (de)lithiation of coated silicon nanoparticles as anode material for lithium-ion batteries studied by insitu transmission electron microscopy. Energy Technol 4(8):1005–1012

    Article  Google Scholar 

  • Vilchevskaya EN, Freidin AB (2013) On kinetics of chemical reaction fronts in elastic solids. In: Altenbach H, Morozov N (eds) Surface effects in solid mechanics, advanced structured materials, Springer, Berlin, 30:181–194

    Google Scholar 

  • Vilchevskaya E, Freidin A, Morozov N (2015) Chemical reaction front kinetics in spherically-symmetric problems of mechanochemistry. Dokl Phys 60(4):175–179

    Article  Google Scholar 

  • Wang JW, He Y, Fan FF, Liu XH, Xia SM, Liu Y, Harris CT, Li H, Huang JY, Mao SX, Zhu T (2013) Two-phase electrochemical lithiation in amorphous silicon. Nano Lett 13(2):709–715

    Article  Google Scholar 

  • Wang H, Yu W, Shen S (2019) Chemo-mechanical coupling effect in the high-temperature oxidation of metal materials: a review. Sci China Tech Sci 62:1246–1254

    Article  Google Scholar 

  • Wilmanski K (1998) Thermomechanics of continua. Springer, Berlin/Heidelberg/New York

    Book  MATH  Google Scholar 

  • Woods J, Bhattarai N, Chapagain P, Yang Y, Neupane S (2019) In situ transmission electron microscopy observations of rechargeable lithium ion batteries. Nano Energy 57:619–640

    Article  Google Scholar 

  • Yen JY, Hwu JG (2000) Enhancement of silicon oxidation rate due to tensile mechanical stress. Appl Phys Lett 76:1834–1835

    Article  Google Scholar 

  • Yue M, Dong X, Fang X, Feng X (2018) Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature. J Appl Phys 123:155301

    Article  Google Scholar 

  • Zhao K, Cui Y (2016) Understanding the role of mechanics in energy materials: a perspective. Extreme Mech Lett 9:347–352

    Article  Google Scholar 

  • Zhao K, Pharr M, Wan Q, Wang W, Kaxiras E, Vlassak J, Suo Z (2012) Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries. J Electrochem Soc 159:A238–A243

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Freidin, A.B., Vilchevskaya, E.N. (2020). Chemical Affinity Tensor in Coupled Problems of Mechanochemistry. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_143-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_143-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics