Skip to main content

Scaling Function in Mechanics of Random Materials

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics

Synonyms

Composite materials; Dimensionless numbers; Homogenization; Mesoscale

Definitions

The concept of a dimensionless scaling function is introduced and its role is discussed in the context of multiscale mechanics of random composites. The proposed scaling function stems from the scalar contraction of the ensemble averaged tensors obtained using Dirichlet and Neumann type boundary conditions. In its most generic form, the scaling function depends upon the phase contrast, volume fraction, material anisotropy, and mesoscale. The scaling function essentially quantifies the departure of a random medium from a homogeneous continuum.

Introduction

Recent advances in computational mechanics have dramatically changed the landscape of engineering and science. The primary driving force is due to a rapid decrease in the computational cost which is estimated as a billion-fold reduction during the last 40 years (Belytschko et al., 2007). In particular, computational mechanics has led to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Belytschko T, Hughes T, Patankar N, Herakovich C, Bakis C (2007) Research directions in computational and composite mechanics. A report of the United States National Committee on theoretical and applied mechanics

    Google Scholar 

  • Dalaq AS, Ranganathan SI (2015) Invariants of mesoscale thermal conductivity and resistivity tensors in random checkerboards. Eng Comput 32(6):1601–1618

    Article  Google Scholar 

  • Dalaq AS, Ranganathan SI, Ostoja-Starzewski M (2013) Scaling function in conductivity of planar random checkerboards. Comput Mater Sci 79:252–261

    Article  Google Scholar 

  • Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, Chichester

    Book  Google Scholar 

  • Du X, Ostoja-Starzewski M (2006) On the size of representative volume element for darcy law in random media. In: Proceedings of the royal society of London A: mathematical, physical and engineering sciences, The Royal Society, vol 462, pp 2949–2963

    Google Scholar 

  • Gorb L, Kuz’min V, Muratov E (2014) Application of computational techniques in pharmacy and medicine, vol 17. Springer, Dordrecht

    Google Scholar 

  • Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11(5): 357–372

    Article  MATH  Google Scholar 

  • Huang YG, Shiota Y, Wu MY, Su SQ, Yao ZS, Kang S, Kanegawa S, Li GL, Wu SQ, Kamachi T et al (2016) Superior thermoelasticity and shape-memory nanopores in a porous supramolecular organic framework. Nat Commun 7:11564

    Article  Google Scholar 

  • Huebner KH, Dewhirst DL, Smith DE, Byrom TG (2008) The finite element method for engineers. Wiley, Hoboken

    Google Scholar 

  • Kale S, Saharan A, Koric S, Ostoja-Starzewski M (2015) Scaling and bounds in thermal conductivity of planar gaussian correlated microstructures. J Appl Phys 117(10):104301

    Article  Google Scholar 

  • Khisaeva Z, Ostoja-Starzewski M (2006) Mesoscale bounds in finite elasticity and thermoelasticity of random composites. In: Proceedings of the royal society of London A: mathematical, physical and engineering sciences, The Royal Society, vol 462, pp 1167–1180

    Google Scholar 

  • KuneÅ¡ J (2012) Dimensionless physical quantities in science and engineering. Elsevier, London

    Google Scholar 

  • Mandel J (1966) Contribution théorique à létude de lécrouissage et des lois de lécoulement plastique. In: Görtler H (ed) Applied mechanics. Springer, Berlin/Heidelberg, pp 502–509

    Chapter  Google Scholar 

  • Mukherjee T, Manvatkar V, De A, DebRoy T (2017) Dimensionless numbers in additive manufacturing. J Appl Phys 121(6):064904

    Article  Google Scholar 

  • Murshed MR, Ranganathan SI (2017a) Hill–Mandel condition and bounds on lower symmetry elastic crystals. Mech Res Commun 81:7–10

    Article  Google Scholar 

  • Murshed MR, Ranganathan SI (2017b) Scaling laws in elastic polycrystals with individual grains belonging to any crystal class. Acta Mechanica 228(4):1525–1539

    Article  MathSciNet  Google Scholar 

  • Murshed MR, Ranganathan SI, Abed FH (2016) Design maps for fracture resistant functionally graded materials. Eur J Mech A Solids 58:31–41

    Article  MathSciNet  Google Scholar 

  • Oden JT, Belytschko T, Babuska I, Hughes T (2003) Research directions in computational mechanics. Comput Methods Appl Mech Eng 192(7):913–922

    Article  MathSciNet  MATH  Google Scholar 

  • Ostoja-Starzewski M (2006) Material spatial randomness: from statistical to representative volume element. Probab Eng Mech 21(2):112–132

    Article  MathSciNet  Google Scholar 

  • Ostoja-Starzewski M (2007) Microstructural randomness and scaling in mechanics of materials. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Ostoja-Starzewski M, Ranganathan SI (2013) Scaling and homogenization in spatially random composites. In: Mantic̆ V (ed) Mathematical methods and models in composites. Imperial College Press, London, pp 61–101

    Chapter  Google Scholar 

  • Ostoja-Starzewski M, Du X, Khisaeva Z, Li W (2007) Comparisons of the size of the representative volume element in elastic, plastic, thermoelastic, and permeable random microstructures. Int J Multiscale Comput Eng 5(2):73–82

    Article  Google Scholar 

  • Ostoja-Starzewski M, Costa L, Ranganathan SI (2015) Scale-dependent homogenization of random hyperbolic thermoelastic solids. J Elast 118(2):243–250

    Article  MathSciNet  MATH  Google Scholar 

  • Ostoja-Starzewski M, Kale S, Karimi P, Malyarenko A, Raghavan B, Ranganathan SI, Zhang J (2016) Chapter two-scaling to RVE in random media. Adv Appl Mech 49:111–211

    Article  Google Scholar 

  • Panigrahi PK (2016) Transport phenomena in microfluidic systems. Wiley, Singapore

    Book  Google Scholar 

  • Quey R, Dawson P, Barbe F (2011) Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing. Comput Methods Appl Mech Eng 200(17):1729–1745

    Article  MATH  Google Scholar 

  • Raghavan BV, Ranganathan SI (2014) Bounds and scaling laws at finite scales in planar elasticity. Acta Mechanica 225(11):3007–3022

    Article  MathSciNet  MATH  Google Scholar 

  • Raghavan BV, Ranganathan SI, Ostoja-Starzewski M (2015) Electrical properties of random checkerboards at finite scales. AIP Adv 5(1):017131

    Article  Google Scholar 

  • Ranganathan SI, Ostoja-Starzewski M (2008a) Mesoscale conductivity and scaling function in aggregates of cubic, trigonal, hexagonal, and tetragonal crystals. Phys Rev B 77(21):214308

    Article  Google Scholar 

  • Ranganathan SI, Ostoja-Starzewski M (2008b) Scale-dependent homogenization of inelastic random polycrystals. J Appl Mech 75(5):051008

    Article  Google Scholar 

  • Ranganathan SI, Ostoja-Starzewski M (2008c) Scaling function, anisotropy and the size of RVE in elastic random polycrystals. J Mech Phys Solids 56(9): 2773–2791

    Article  MathSciNet  MATH  Google Scholar 

  • Ranganathan SI, Ostoja-Starzewski M (2008d) Universal elastic anisotropy index. Phys Rev Lett 101(5):055504

    Article  Google Scholar 

  • Ranganathan SI, Ostoja-Starzewski M (2009) Towards scaling laws in random polycrystals. Int J Eng Sci 47(11):1322–1330

    Article  MathSciNet  MATH  Google Scholar 

  • Ranganathan SI, Decuzzi P, Wheeler LT, Ferrari M (2010a) Geometrical anisotropy in biphase particle reinforced composites. J Appl Mech 77(4):041017

    Article  Google Scholar 

  • Ranganathan SI, Yoon DM, Henslee AM, Nair MB, Smid C, Kasper FK, Tasciotti E, Mikos AG, Decuzzi P, Ferrari M (2010b) Shaping the micromechanical behavior of multi-phase composites for bone tissue engineering. Acta Biomaterialia 6(9):3448–3456

    Article  Google Scholar 

  • Reuss A (1929) Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1):49–58

    Article  MATH  Google Scholar 

  • Shore SN (2012) An introduction to astrophysical hydrodynamics. Academic, San Diego

    Google Scholar 

  • Splinter R (2010) Handbook of physics in medicine and biology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Voigt W (1928) Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). Teubner, Leipzig

    MATH  Google Scholar 

  • White FM (2003) Fluid mechanics. McGraw-Hill, New York

    Google Scholar 

  • Zhang J, Ostoja-Starzewski M (2016) Frequency-dependent scaling from mesoscale to macroscale in viscoelastic random composites. In: Proceedings of the royal society of London A: mathematical, physical and engineering sciences, The Royal Society, vol 472

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivakumar I. Ranganathan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ranganathan, S.I., Murshed, M.R. (2018). Scaling Function in Mechanics of Random Materials. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_72-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_72-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics