Skip to main content

Symbioses: Assisting Plant Success in Aquatic Settings

  • Reference work entry
  • First Online:
The Wetland Book

Abstract

Plants form associations with fungi in leaves, stems, and roots. Mycorrhizas develop in roots. Generally, plants benefit through increased nutrition in exchange for carbohydrates. Mycorrhizas are associated with increased tolerance to environmental stressors and competitive ability. While water quality and quantity affect mycorrhizas, several types are found in wetlands. Arbuscular mycorrhizas are the most widespread, being characterized by internal branched structures (arbuscules). Dark septate endophytes are a poorly studied but wide-ranging group that are seen as darkly colored hyphae on and within roots. Ectomycorrhizas are associated with tree species and while present in wetlands, their function is unclear. Orchids and ericaceous plants form mycorrhrizas called orchid and ericoid mycorrhizas; their functions in wetland plants are also poorly studied. Fungi living in shoot tissues (shoot endophytes) are ubiquitous being found in terrestrial and wetland environments. While altered hydrology can affect wetland endophyte ecology, the impacts on vegetation are currently unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahlholm J, Helander M, Henriksson M, Metzler M, Saikkonen K. Environmental conditions and host genotype direct genetic diversity of Venturia ditricha, a fungal endophyte of birch trees. Evolution. 2002;56:1566–73.

    PubMed  Google Scholar 

  • Arechavaleta M, Bacon CW, Plattner RD, Hoveland CS, Radcliffe DE. Accumulation of ergopeptide alkaloids in symbiotic tall fescue grown under deficits of soil water and nitrogen fertilizer. Appl Environ Microbiol. 1992;58:857.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold A, Herre E. Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia. 2003;95:388–98.

    PubMed  Google Scholar 

  • Arnold A, Lutzoni F. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology. 2007;88:541–9.

    PubMed  Google Scholar 

  • Arnold A, Maynard Z, Gilbert G, Coley P, Kursar T. Are tropical fungal endophytes hyperdiverse? Ecol Lett. 2000;3:267–74.

    Google Scholar 

  • Bacon C. Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte-infected tall fescue. Agric Ecosyst Environ. 1993;44:123–41.

    Google Scholar 

  • Belesky DP, Malinowski DP. Abiotic stresses and morphological plasticity and chemical adaptations of Neotyphodium-infected tall fescue plants. In: Bacon CW, White Jr JF, editors. Microbial endophytes. New York: Marcel Dekker, Inc.; 2000.

    Google Scholar 

  • Blodgett J, Swart W, Louw S, Weeks W. Soil amendments and watering influence the incidence of endophytic fungi in Amaranthus hybridus in South Africa. Appl Soil Ecol. 2007;35:311–8.

    Google Scholar 

  • Bohrer KE, Friese CF, Amon JP. Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza. 2004;14:329–37.

    PubMed  Google Scholar 

  • Bradley R, Burt AJ, Read DJ. The biology of mycorrhiza in the Ericaceae VII. The role of the mycorrhizal infection in heavy metal resistance. New Phytol. 1982;91:197–209.

    CAS  Google Scholar 

  • Carvalho LM, Correia PM, Cacador I, MA M-L. Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi in Aster tripolium L. Biol Fertil Soils. 2003;38:137–43.

    Google Scholar 

  • Clay K. Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology. 1988;69:10–6.

    Google Scholar 

  • Clay K, Marks S, Cheplick GP. Effects of insect herbivory and fungal endopyte infection on competitive interactions among grasses. Ecology. 1993;74:358–62.

    Google Scholar 

  • Colbentz KE, Van Bael SA. Field colonies of leaf-cutting ants select plant materials containing low abundances of endophytic fungi. Ecosphere. 2013;4:1–10.

    Google Scholar 

  • Cowden CC, Shefferson RP. Diversity of root-associated fungi of mature Habenaria radiata and Epipactis thunbergii colonizing manmade wetlands in Hiroshima Prefecture, Japan. Mycoscience. 2013;54:327–34.

    Google Scholar 

  • Day JW, Boesch DF, Clairain EJ, Kemp GP, Laska SB, Mitsch WJ, Orth K, Mashriqui H, Reed DJ, Shabman L, Simenstad CA, Streever BJ, Twilley RR, Watson CC, Wells JT, Whigham DF. Restoration of the Mississippi Delta: lessons from Hurricanes Katrina and Rita. Science. 2007;315:1679–84.

    CAS  PubMed  Google Scholar 

  • Denny HJ, Ridge I. Fungal slime and its role in the mycorrhizal amelioration of zinc toxicity to higher plants. New Phytol. 1995;130:251–7.

    CAS  Google Scholar 

  • Elamo P, Helander M, Saloniemi I, Neuvonen S. Birch family and environmental conditions affect endophytic fungi in leaves. Oecologia. 1999;118:151–6.

    PubMed  Google Scholar 

  • Eschen R, Hunt S, Mykura C, Gange AC, Sutton BC. The foliar endophytic fungal community composition in Cirsium arvense is affected by mycorrhizal colonization and soil nutrient content. Fungal Biol. 2010;114:991–8.

    CAS  PubMed  Google Scholar 

  • Fail GL, Langenheim JH. Infection process of Pestalotia subcuticularis on leaves of Hymenaea courbaril. Phytopathology. 1990;80:1259–65.

    Google Scholar 

  • Gange A, Dey A, Currie A, Sutton B. Site- and species-specific differences in endophyte occurrence in two herbaceous plants. J Ecol. 2007;95:614–22.

    Google Scholar 

  • Garriock ML, Peterson RL, Ackerley CA. Early stages in colonization of Allium porrum (leek) by the vesicular-arbuscular mycorrhizal fungus, Glomus versiforme. New Phytol. 1989;112:85–92.

    Google Scholar 

  • Haselwandter K, Read DJ. The significance of a root-fungus association in two Carex species of high-alpine communities. Oecologia (Berl). 1982;53:352–4.

    CAS  Google Scholar 

  • Hashizume Y, Fukuda K, Sahashi N. Effects of summer temperature on fungal endophyte assemblages in Japanese beech (Fagus crenata) leaves in pure beech stands. Botany. 2010;88:266–74.

    CAS  Google Scholar 

  • Hashizume Y, Sahashi N, Fukuda K. The influence of altitude on endophytic mycobiota in Quercus acuta leaves collected in two areas 1000 km apart. For Pathol. 2008;38:218–26.

    Google Scholar 

  • Helander M, Neuvonen S, Sieber TN, Petrini O. Simulated acid rain affects birch leaf endophyte populations. Microb Ecol. 1993;26:227–34.

    CAS  PubMed  Google Scholar 

  • Hoffman M, Arnold A. Geographic locality and host identity shape fungal endophyte communities in Cupressaceous trees. Mycol Res. 2008;112:331–44.

    CAS  PubMed  Google Scholar 

  • Illyés Z, Halász K, Rudnóy S, Ouanphanivanh N, Garay T, Bratek A. Changes in the diversity of the mycorrhizal fungi of orchids as a function of the water supply of the habitat. J Appl Bot Food Qual. 2009;83:28–36.

    Google Scholar 

  • Johnson NC, Graham JH. The continuum concept remains a useful framework for studying mycorrhizal functioning. Plant Soil. 2013;363:411–9.

    CAS  Google Scholar 

  • Jumpponen A, Trappe JM. Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol. 1998;140:295–310.

    PubMed  Google Scholar 

  • Kai W, Zhao ZW. Occurrence of arbuscular mycorrhizas and dark septate endophytes in hydrophytes from lakes and streams in southwest China. Int Rev Hydrobiol. 2006;91:29–37.

    Google Scholar 

  • Kandalepas D. 2012. Effects of coastal dynamics on colonization of Louisiana wetland plants by fungal endophytes. Louisiana State University, dissertation 208pp.

    Google Scholar 

  • Kandalepas D, Stevens KJ, Platt WJ. Root endophytes are abundant in a degrading Louisiana marsh – an assessment of root colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Wetlands. 2010;30:189–99.

    Google Scholar 

  • Klymiuk AA, Taylor TN, Taylor EL, Krings M. Paleomycology of the Princeton Chert II. Dark septate fungi in the aquatic angiosperm Eorhiza arnoldii indicate a diverse assemblage of root-colonizing fungi during the Eocene. Mycologia. 2013;2013:13–25.

    Google Scholar 

  • Kohout P, Sýkorová Z, ÄŒtvrtlíková M, Rydlová J, Suda J, Vohník M, Sudová R. Surprising spectra of root-associated fungi in submerged aquatic plants. FEMS Microbiol Ecol. 2012;80:216–35.

    CAS  PubMed  Google Scholar 

  • Kumaresan V, Suryanarayanan T. Occurrence and distribution of endophytic fungi in a mangrove community. Mycol Res. 2001;105:1388–91.

    Google Scholar 

  • Leyval C, Turnau K, Haselwandter K. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza. 1997;7:139–53.

    CAS  Google Scholar 

  • Malinowski D, Leuchtmann A, Schmidt D, Nösberger J. Growth and water status in meadow fescue is affected by Neotyphodium and Phialophora species endophytes. Agron J. 1997;89:673–8.

    Google Scholar 

  • Marks S, Clay K. Physiological responses of Festuca arundinacea to fungal endophyte infection. New Phytol. 1996;133:727–33.

    Google Scholar 

  • Newsham KK. Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp. ambigua. New Phytol. 1999;144:517–24.

    CAS  PubMed  Google Scholar 

  • Perotto S, Peretto R, Faccio A, Schubert A, Varma A, Bonfante P. Ericoid mycorrhizal fungi: cellular and molecular bases of their interactions with the host plant. Can J Bot. 1995;73:S557–68.

    CAS  Google Scholar 

  • Peterson RL, Farquhar ML. Mycorrhizas – integrated development between roots and fungi. Mycologia. 1994;86:311–26.

    Google Scholar 

  • Peterson RL, Massicotte HB, Melville LH. Mycorrhizas: anatomy and cell biology. Ottawa: NRC Research Press; 2004.

    Google Scholar 

  • Peterson RL, Uetake Y, Zelmer C. Fungal symbiosis with orchid protocorms. Symbiosis. 1998;25:29–55.

    Google Scholar 

  • Peterson RL, Wagg C, Pautler M. Associations between mycorrhizal endophytes and roots: do structural features indicate function? Botany. 2008;86:445–56.

    CAS  Google Scholar 

  • Pianka ER. Latitudinal gradients in species diversity: a review of concepts. Am Nat. 1966;100:33–46.

    Google Scholar 

  • Rains KC, Nadkarni NM, Bledsoe CS. Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest. Mycorrhiza. 2003;13:257–64.

    PubMed  Google Scholar 

  • Read DJ. The structure and function of the ericoid mycorrhizal root. Ann Bot. 1996;77:365–74.

    CAS  Google Scholar 

  • Read DJ, Haselwandter K. Observations on the mycorrhizal status of some alpine plant communities. New Phytol. 1981;88:341–52.

    Google Scholar 

  • Redman R, Dunigan D, Rodriguez R. Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol. 2001;151:705–16.

    PubMed  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, Rodriguez R. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One. 2011;6:e14823.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rillig MC. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci. 2004;84:355–63.

    Google Scholar 

  • Robertson SJ, Tackaberry LE, Egger KN, Massicotte HB. Ectomycorrhizal fungal communities of black spruce differ between wetland and upland forests. Can J For Res. 2006;36:972–85.

    Google Scholar 

  • Saikkonen K, Faeth S, Helander M, Sullivan T. Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst. 1998;29:319–43.

    Google Scholar 

  • Schüßler A, Schwarzotti D, Walker C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res. 2001;105:1413–21.

    Google Scholar 

  • Slankis V. Soil factors influencing formation of Mycorrhizae. Annu Rev Phytopathol. 1974;12:437–57.

    CAS  Google Scholar 

  • Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd ed. New York: Academic; 2008.

    Google Scholar 

  • Solaiman MZ, Hirata H. Effect of arbuscular mycorrhizal fungi inoculation of rice seedlings at the nursery stage upon performance in the paddy field and greenhouse. Plant Soil. 1997;191:1–12.

    CAS  Google Scholar 

  • Stevens KJ, Peterson R. The effect of a water gradient on the vesicular-arbuscular mycorrhizal status of Lythrum salicaria L. (purple loosestrife). Mycorrhiza. 1996;6:99–104.

    Google Scholar 

  • Stevens KJ, Spender SW, Peterson RL. Phosphorus, arbuscular mycorrhizal fungi and performance of the wetland plant Lythrum salicaria L. under inundated conditions. Mycorrhiza. 2002;12:277–83.

    CAS  PubMed  Google Scholar 

  • Stevens KJ, Wall CB, Janssen JA. Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L., and Eclipta prostrata (L.) L., grown under three levels of water availability. Mycorrhiza. 2011;21:279–88.

    PubMed  Google Scholar 

  • Stevens KJ, Wellner MR, Acevedo M. Dark septate endophyte and arbuscular mycorrhizal status of herbaceous vegetation recolonizing a remnant bottomland hardwood forest in east Texas. Aquat Bot. 2009;92:105–11.

    Google Scholar 

  • Stewart SL, Zettler LW. Symbiotic germination of three semiaquatic rein orchids (Habenaria repens, H. quinqueseta, H. macroceratitis) from Florida. Aquat Bot. 2002;72:25–35.

    Google Scholar 

  • Taylor TN, Remy W, Hass H, Kerp H. Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia. 1995;87:560–73.

    Google Scholar 

  • Thormann MN, Currah RS, Bayley SE. The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada. Wetlands. 1999;19:438–50.

    Google Scholar 

  • Twanabasu B, Stevens KJ, Venables B, Sears W. The effects of triclosan on arbuscular mycorrhizal spore germination, hyphal growth, and hyphal branching in Glomus intraradices. Sci Total Environ. 2013a;454–455:51–60.

    PubMed  Google Scholar 

  • Twanabasu B, Smith C, Stevens KJ, Venables B, Sears W. Triclosan inhibits arbuscular mycorrhizal colonization in three wetland plants. Sci Total Environ. 2013b;447:450–7.

    CAS  PubMed  Google Scholar 

  • Valkama E, Koricheva J, Salminen J, Helander M, Saloniemi I, Saikkonen K, Pihlaja K. Leaf surface traits: overlooked determinants of birch resistance to herbivores and foliar micro-fungi? Trees Struct Funct. 2005;19:191–7.

    Google Scholar 

  • Van Bael SA, Seid MA, Wcislo WT. Endophytic fungi increase the processing rate of leaves by leaf-cutting ants (Atta). Ecol Entomol. 2012;37:318–21.

    Google Scholar 

  • Vasilas B, Vasilas L, Thompson J, Rizzo A, Furhmann J, Evans T, Pesek J, Kunkle K. Ectomycorrhizal mantles as indicators of hydrology for jurisdictional wetland determinations. Wetlands. 2004;24:784–95.

    Google Scholar 

  • Weishampel PA, Bedford BL. Wetland dicots and monocots differ in colonization by arbuscular mycorrhzal fungi and dark septate endophytes. 2006. Mycorrhiza. 2006;16:495–502.

    Google Scholar 

  • Wetzel PR, van der Valk AG. Vesicular-arbuscular mycorrhizae in prairie pothole wetland vegetation in Iowa and North Dakota. Can J Bot. 1996;74:883–90.

    Google Scholar 

  • White JA, Charvat I. The mycorrhizal status of an emergent aquatic, Lythrum salicaria L., at different levels of phosphorus availability. Mycorrhiza. 1999;9:191–7.

    CAS  Google Scholar 

  • Wilson BJ, Addy HD, Tsuneda A, Hambleton S, Currah RS. Phialocephala sphaeroides sp. nov., a new species among the dark septate endophytes from a boreal wetland in Canada. Can J Bot. 2004;82:607–17.

    CAS  Google Scholar 

  • Wright SF, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil. 1998;198:97–107.

    CAS  Google Scholar 

  • Yu T, Nassuth A, Peterson RL. Characterization of the interaction between the dark septate fungus Phialocephala fortinii and Asparagus officinalis roots. Can J Microbiol. 2001;47:741–53.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Stevens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stevens, K.J., Twanabasu, B.R., Kandalepas, D. (2018). Symbioses: Assisting Plant Success in Aquatic Settings. In: Finlayson, C.M., et al. The Wetland Book. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9659-3_49

Download citation

Publish with us

Policies and ethics