Skip to main content

Neural Representation and Computation

  • Reference work entry
  • First Online:
Handbook of Neuroethics

Abstract

Nervous systems perform amazing control functions, which include driving complex locomotive systems in real time. How do they do it? The best explanation neuroscientists have found is that nervous systems collect information from the organism and the environment, use that information to construct representations, and perform computations on such representations. The output of neural computations drives the organism. This article discusses what it means for nervous systems to carry information, to represent, and to perform computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, C., & Bekoff, M. (1995). Biological function, adaptation, and natural design. Philosophy of Science, 62(4), 609–622.

    Article  Google Scholar 

  • Bigelow, J., & Pargetter, R. (1987). Functions. The Journal of Philosophy, 84(4), 181–196.

    Article  Google Scholar 

  • Boden, M. (2006). The mind as machine. Oxford: Oxford University Press.

    Google Scholar 

  • Borst, A., & Theunissen, F. E. (1999). Information theory and neural coding. Nature Neuroscience, 2(11), 947–957. doi:10.1038/14731.

    Article  Google Scholar 

  • Dretske, F. (1988). Explaining behavior: Reasons in a world of causes. Cambridge, MA: MIT Press.

    Google Scholar 

  • Fodor (1981). Scientific American, 244, 114–25.

    Google Scholar 

  • Godfrey-Smith, P. (1994). A modern history theory of functions. Noûs, 28(3), 344–362.

    Article  Google Scholar 

  • Grice, H. P. (1957). Meaning. Philosophical Review, 66(3), 377–388.

    Article  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160, 106–154.

    Google Scholar 

  • Koch, C. (1999). Biophysics of computation: Information processing in single neurons. Oxford: Oxford University Press.

    Google Scholar 

  • Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society B, 207, 187–217.

    Article  Google Scholar 

  • Millikan, R. G. (1989). In defense of proper functions. Philosophy of Science, 56(2), 288–302.

    Article  Google Scholar 

  • Moser, E. I., Kropff, E., & Moser, M.-B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annual Review of Neuroscience, 31(1), 69–89. doi:10.1146/annurev.neuro.31.061307.090723.

    Article  Google Scholar 

  • Peirce, C. S. (1992). In N. Houser & C. Kloesel (Eds.), The essential peirce. Bloomington: Indiana University Press.

    Google Scholar 

  • Piccinini, G. (2008). Computation without representation. Philosophical Studies, 137(2), 205–241.

    Article  Google Scholar 

  • Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive Science, 34, 453–488.

    Article  Google Scholar 

  • Piccinini, G., & Scarantino, A. (2011). Information processing, computation, and cognition. Journal of Biological Physics, 37(1), 1–38. doi:10.1007/s10867-010-9195-3.

    Article  Google Scholar 

  • Romo, R., Hernandez, A., Zainos, A., Brody, C., & Salinas, E. (2002). Exploring the cortical evidence of a sensory-discrimination process. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357(1424), 1039–1051. doi:10.1098/rstb.2002.1100.

    Article  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.

    Article  Google Scholar 

  • Strong, S. P., Koberle, R., van Steveninck, R. R. D. R., & Bialek, W. (1998). Entropy and information in neural spike trains. Physical Review Letters, 80(1), 197.

    Article  Google Scholar 

  • Turing, A. M. (1936–7 [1965]). On computable numbers, with an application to the Entscheidungsproblem (Repreinted in The Undecidable, pp. 116–154, by M. Davis, Ed., Ewlett, Raven).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corey J. Maley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Maley, C.J., Piccinini, G. (2015). Neural Representation and Computation. In: Clausen, J., Levy, N. (eds) Handbook of Neuroethics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4707-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4707-4_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4706-7

  • Online ISBN: 978-94-007-4707-4

  • eBook Packages: Humanities, Social Sciences and Law

Publish with us

Policies and ethics