Skip to main content

Snake Venom and Hemostasis

  • Reference work entry
  • First Online:
Clinical Toxinology in Asia Pacific and Africa

Part of the book series: Toxinology ((TOXI,volume 2))

Abstract

Venomous snakebites are a common cause of death globally. Snake venom main targets are neuromuscular and/or hemostatic systems resulting in paralysis and/or bleeding disorders. This review focuses only on the latter effect.

Hemostasis is a complex process keeping the balance between bleeding and thrombosis. Venom genes evolved from a few nontoxic genes, duplicated and recruited to express in venom glands. Subsequently, they undergo accelerated evolution to greatly diversify their toxicity affecting all aspects of hemostasis, including vessel walls, platelets, blood coagulation, natural anticoagulants, and fibrinolysis. The effects can be activating and/or inhibitory.

The major classes of venom proteins affecting hemostasis are reviewed. They include viper venom proteins: snake venom serine proteases, snake venom metalloproteinases, disintegrins, snaclecs, and type II phospholipases A2, as well as elapid proteins: three-finger toxins, prothrombin activators, Kunitz-type serine protease inhibitor, and type I phospholipases A2. Moreover, L-amino acid oxidases and nucleotidases are present in both snake families. Although some of these toxins have no clinical significance, they are currently used or potentially useful as diagnostic or therapeutic agents.

From the clinical standpoint, the most common hemostatic defect caused by snakebites is consumptive coagulopathy from venom components that activate the common pathway of blood coagulation: factors X and V, prothrombin, or fibrinogen. This combined with fibrino(geno)lysis, platelet activation, and vessel wall damages results in hypofibrinogenemia, thrombocytopenia, and bleeding. Whole blood clotting time is recommended for diagnosis and follow-up for consumptive coagulopathy after snakebites. Additionally, snakebite-induced anticoagulation syndrome without consumption, thrombotic microangiopathy, and thromboembolism has been occasionally reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amiconi G, Amoresano A, Boumis G, Brancaccio A, De Cristofaro R, De Pascalis A, Di Girolamo S, Maras B, Scaloni A. A novel venombin B from Agkistrodon contortrix contortrix: evidence for recognition properties in the surface around the primary specificity pocket different from thrombin. Biochemistry. 2000;39(33):10294–308.

    Article  CAS  PubMed  Google Scholar 

  • Andrews RK, Gardiner EE, Asazuma N, Berlanga O, Tulasne D, Nieswandt B, Smith AI, Berndt MC, Watson SP. A novel viper venom metalloproteinase, alborhagin, is an agonist at the platelet collagen receptor GPVI. J Biol Chem. 2001;276(30):28092–7.

    Article  CAS  PubMed  Google Scholar 

  • Arpijuntarangkoon J, Rojnuckarin P, Muanpasitporn C, Kaeothip S, Sangvanich P, Intragumtornchai T. Molecular cloning and sequence analysis of alboaggregin B. Platelets. 2007;18(4):266–72.

    Article  CAS  PubMed  Google Scholar 

  • Au LC, Lin SB, Chou JS, Teh GW, Chang KJ, Shih CM. Molecular cloning and sequence analysis of the cDNA for ancrod, a thrombin-like enzyme from the venom of Calloselasma rhodostoma. Biochem J. 1993;294(Pt2):387–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banerjee Y, Mizuguchi J, Iwanaga S, Kini RM. Hemextin AB complex, a unique anticoagulant protein complex from Hemachatus haemachatus (African Ringhals cobra) venom that inhibits clot initiation and factor VIIa activity. J Biol Chem. 2005;280(52):42601–11.

    Article  CAS  PubMed  Google Scholar 

  • Caccin P, Pellegatti P, Fernandez J, Vono M, Cintra-Francischinelli M, Lomonte B, Gutiérrez JM, Di Virgilio F, Montecucco C. Why myotoxin-containing snake venoms possess powerful nucleotidases? Biochem Biophys Res Commun. 2013;430:1289–93.

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ. The continuing saga of snake venom disintegrins. Toxicon. 2013a;62:40–9.

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ. Snake venomics: from the inventory of toxins to biology. Toxicon. 2013b;75(Dec 1):44-62.

    Google Scholar 

  • Earl ST, Masci PP, de Jersey J, Lavin MF, Dixon J. Drug development from Australian elapid snake venoms and the Venomics pipeline of candidates for haemostasis: Textilinin-1 (Q8008), Haempatch™ (Q8009) and CoVase™ (V0801). Toxicon. 2012;59:456–63.

    Article  CAS  PubMed  Google Scholar 

  • Fox JW. A brief review of the scientific history of several lesser-known snake venom proteins: l-amino acid oxidases, hyaluronidases and phosphodiesterases. Toxicon. 2013;62:75–82.

    Article  CAS  PubMed  Google Scholar 

  • Fox JW, Serrano SM. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J. 2008;275(12):3016–30.

    Article  CAS  PubMed  Google Scholar 

  • Fry BG. From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 2005;15(3):403–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gutiérrez JM, Rucavado A. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie. 2000;82(9–10):841–50.

    Article  PubMed  Google Scholar 

  • Hart ML, Köhler D, Eckle T, Kloor D, Stahl GL, Eltzschig HK. Direct treatment of mouse or human blood with soluble 5'-nucleotidase inhibits platelet aggregation. Arterioscler Thromb Vasc Biol. 2008;28(8):1477–83.

    Article  CAS  PubMed  Google Scholar 

  • Isbister GK, Little M, Cull G, McCoubrie D, Lawton P, Szabo F, Kennedy J, Trethewy C, Luxton G, Brown SG, Currie BJ. Thrombotic microangiopathy from Australian brown snake (Pseudonaja) envenoming. Intern Med J. 2007;37(8):523–8.

    Article  CAS  PubMed  Google Scholar 

  • Isbister GK, Maduwage K, Shahmy S, Mohamed F, Abeysinghe C, Karunathilake H, Ariaratnam CA, Buckley NA. Diagnostic 20-min whole blood clotting test in Russell’s viper envenoming delays antivenom administration. QJM. 2013;106(10):925–32.

    Article  CAS  PubMed  Google Scholar 

  • Itoh N, Tanaka N, Mihashi S, Yamashina I. Molecular cloning and sequence analysis of cDNA for batroxobin, a thrombin-like snake venom enzyme. J Biol Chem. 1987;262(7):3132–5.

    CAS  PubMed  Google Scholar 

  • Joseph JS, Kini RM. Snake venom prothrombin activators homologous to blood coagulation factor Xa. Haemostasis. 2001;31(3–6):234–40.

    CAS  PubMed  Google Scholar 

  • Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Lalloo DG, de Silva HJ. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008;5(11):e218.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kini RM. Structure-function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms. Toxicon. 2005;45(8):1147–61.

    Article  CAS  PubMed  Google Scholar 

  • Kini RM. Toxins in thrombosis and haemostasis: potential beyond imagination. J Thromb Haemost. 2011;9 Suppl 1:195–208.

    Article  CAS  PubMed  Google Scholar 

  • Kisiel W, Kondo S, Smith KJ, McMullen BA, Smith LF. Characterization of a protein C activator from Agkistrodon contortrix contortrix venom. J Biol Chem. 1987;262(26):12607–13.

    CAS  PubMed  Google Scholar 

  • Laing GD, Clissa PB, Theakston RD, Moura-da-Silva AM, Taylor MJ. Inflammatory pathogenesis of snake venom metalloproteinase-induced skin necrosis. Eur J Immunol. 2003;33(12):3458–63.

    Article  CAS  PubMed  Google Scholar 

  • Lambeau G, Schmid-Alliana A, Lazdunski M, Barhanin J. Identification and purification of a very high affinity binding protein for toxic phospholipases A2 in skeletal muscle. J Biol Chem. 1990;265(16):9526–32.

    CAS  PubMed  Google Scholar 

  • Mahasandana S, Rungruxsirivorn Y, Chantarangkul V. Clinical manifestations of bleeding following Russell’s viper and Green pit viper bites in adults. Southeast Asian J Trop Med Public Health. 1980;11:285–93.

    CAS  PubMed  Google Scholar 

  • Maita N, Nishio K, Nishimoto E, Matsui T, Shikamoto Y, Morita T, Sadler JE, Mizuno H. Crystal structure of von Willebrand factor A1 domain complexed with snake venom, bitiscetin: insight into glycoprotein Ibalpha binding mechanism induced by snake venom proteins. J Biol Chem. 2003;278(39):37777–81.

    Article  CAS  PubMed  Google Scholar 

  • Marcinkiewicz C, Vijay-Kumar S, McLane MA, Niewiarowski S. Significance of RGD loop and C-terminal domain of echistatin for recognition of alphaIIb beta3 and alpha(v) beta3 integrins and expression of ligand-induced binding site. Blood. 1997;90(4):1565–75.

    CAS  PubMed  Google Scholar 

  • Minea RO, Helchowski CM, Zidovetzki SJ, Costa FK, Swenson SD, Markland Jr FS. Vicrostatin - an anti-invasive multi-integrin targeting chimeric disintegrin with tumor anti-angiogenic and pro-apoptotic activities. PLoS One. 2010;5(6):e10929.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mitrakul C. Effect of five Thai snake venoms on coagulation, fibrinolysis and platelet aggregation. Southeast Asian J Trop Med Public Health. 1979;10(2):266–75.

    CAS  PubMed  Google Scholar 

  • Morita T. Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities. Toxicon. 2005;45(8):1099–114.

    Article  CAS  PubMed  Google Scholar 

  • Muanpasitporn C, Rojnuckarin P. Expression and characterization of a recombinant fibrinogenolytic serine protease from green pit viper (Trimeresurus albolabris) venom. Toxicon. 2007;49(8):1083–9.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Nobuhisa I, Deshimaru M, Nakai M, Ogawa T, Shimohigashi Y, Fukumaki Y, Hattori M, Sakaki Y, Hattori S, Ohno M. Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A2 isozyme genes. Proc Natl Acad Sci U S A. 1995;92(12):5605–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Navdaev A, Dörmann D, Clemetson JM, Clemetson KJ. Echicetin, a GPIb-binding snake C-type lectin from Echis carinatus, also contains a binding site for IgMkappa responsible for platelet agglutination in plasma and inducing signal transduction. Blood. 2001;97(8):2333–41.

    Article  CAS  PubMed  Google Scholar 

  • Pongpit J, Limpawittayakul P, Juntiang J, Akkawat B, Rojnuckarin P. The role of prothrombin time (PT) in evaluating green pit viper (Cryptelytrops sp.) bitten patients. Trans R Soc Trop Med Hyg. 2012;106(7):415–8.

    Article  PubMed  Google Scholar 

  • Reid HA, Chan KE, Thean PC. Prolonged coagulation defect (defibrination syndrome) in Malayan viper bite. Lancet. 1963;1(7282):621–6.

    Article  CAS  PubMed  Google Scholar 

  • Rojnuckarin P. Snakebite-induced coagulopathy and bleeding disorders. In: Kini RM, Clemetson KJ, Markland FS, McLane MA, Morita T, editors. Toxins and Hemostasis: from bench to bedside. Dordrecht: Springer; 2010. p. 699–710.

    Chapter  Google Scholar 

  • Rojnuckarin P, Mahasandana S, Intragumthornchai T, Sutcharitchan P, Swasdikul D. Prognostic factors of green pit viper bites. Am J Trop Med Hyg. 1998;58(1):22–5.

    CAS  PubMed  Google Scholar 

  • Rojnuckarin P, Intragumtornchai T, Sattapiboon R, Muanpasitporn C, Pakmanee N, Khow O, Swasdikul D. The effects of green pit viper (Trimeresurus albolabris and Trimeresurus macrops) venom on the fibrinolytic system in human. Toxicon. 1999;37(5):743–55.

    Article  CAS  PubMed  Google Scholar 

  • Rojnuckarin P, Muanpasitporn C, Chanhome L, Arpijuntarangkoon J, Intragumtornchai T. Molecular cloning of novel serine proteases and phospholipases A2 from green pit viper (Trimeresurus albolabris) venom gland cDNA library. Toxicon. 2006;47(3):279–87.

    Article  CAS  PubMed  Google Scholar 

  • Rojnuckarin P, Banjongkit S, Chantawibun W, Akkawat B, Juntiang J, Noiphrom J, Pakmanee N, Intragumtornchai T. Green pit viper (Trimeresurus albolabris and T. macrops) venom antigenaemia and kinetics in humans. Trop Doct. 2007;37(4):207–10.

    Article  PubMed  Google Scholar 

  • Sano-Martins IS, Fan HW, Castro SC, Tomy SC, Franca FO, Jorge MT, Kamiguti AS, Warrell DA, Theakston RD. Reliability of the simple 20 minute whole blood clotting test (WBCT20) as an indicator of low plasma fibrinogen concentration in patients envenomed by Bothrops snakes. Butantan Institute Antivenom Study Group. Toxicon. 1994;32(9):1045–50.

    Article  CAS  PubMed  Google Scholar 

  • Saul FA, Prijatelj-Znidarsic P, Vulliez-le Normand B, Villette B, Raynal B, Pungercar J, Krizaj I, Faure G. Comparative structural studies of two natural isoforms of ammodytoxin, phospholipases A2 from Vipera ammodytes ammodytes which differ in neurotoxicity and anticoagulant activity. J Struct Biol. 2010;169:360–9.

    Article  CAS  PubMed  Google Scholar 

  • Serrano SM, Mentele R, Sampaio CA, Fink E. Purification, characterization, and amino acid sequence of a serine proteinase, PA-BJ, with platelet-aggregating activity from the venom of Bothrops jararaca. Biochemistry. 1995;34(21):7186–93.

    Article  CAS  PubMed  Google Scholar 

  • Suntravat M, Yusuksawad M, Sereemaspun A, Pérez JC, Nuchprayoon I. Effect of purified Russell’s viper venom-factor X activator (RVV-X) on renal hemodynamics, renal functions, and coagulopathy in rats. Toxicon. 2011;58(3):230–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takeda S, Igarashi T, Mori H. Crystal structure of RVV-X: an example of evolutionary gain of specificity by ADAM proteinases. FEBS Lett. 2007;581(30):5859–64.

    Article  CAS  PubMed  Google Scholar 

  • Tanos PP, Isbister GK, Lalloo DG, Kirkpatrick CM, Duffull SB. A model for venom-induced consumptive coagulopathy in snake bite. Toxicon. 2008;52(7):769–80.

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga F, Nagasawa K, Tamura S, Miyata T, Iwanaga S, Kisiel W. The factor V-activating enzyme (RVV-V) from Russell’s viper venom. Identification of isoproteins RVV-V alpha, -V beta, and -V gamma and their complete amino acid sequences. J Biol Chem. 1988;263(33):17471–81.

    CAS  PubMed  Google Scholar 

  • Weinstein SA, White J, Keyler DE, Warrell DA. Non-front-fanged colubroid snakes: a current evidence-based analysis of medical significance. Toxicon. 2013;69:103–13. [Epub ahead of print].

    Article  CAS  PubMed  Google Scholar 

  • White J. Snake venoms and coagulopathy. Toxicon. 2005;45(8):951–67.

    Article  CAS  PubMed  Google Scholar 

  • Zingali RB, Ferreira MS, Assafim M, Frattani FS, Monteiro RQ. Bothrojaracin, a Bothrops jararaca snake venom-derived (pro)thrombin inhibitor, as an anti-thrombotic molecule. Pathophysiol Haemost Thromb. 2005;34(4–5):160–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ponlapat Rojnuckarin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Rojnuckarin, P. (2015). Snake Venom and Hemostasis. In: Gopalakrishnakone, P., Faiz, A., Fernando, R., Gnanathasan, C., Habib, A., Yang, CC. (eds) Clinical Toxinology in Asia Pacific and Africa. Toxinology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6386-9_49

Download citation

Publish with us

Policies and ethics