Skip to main content

Antimicrobial Peptides in Spider Venoms

  • Reference work entry
  • First Online:
Spider Venoms

Part of the book series: Toxinology ((TOXI))

Abstract

Historically, toxinologists have regarded venom studies focusing on lethality and other apparent toxic effects using mammals and insects as models. Nevertheless, with the development of sensitive and accessible analytical techniques, novel structures, especially peptides lacking observable effects in mammal and insect systems, have been increasingly noticed. Among such novel structures and activities are the antimicrobial peptides (AMPs). In this chapter, we review the current literature dealing with AMPs from spider venoms since their first appearance back in 1998, when a peptide was isolated from the venom of a species of wolf spider. It is also worth mentioning that the description of such peptides is constantly expanding, along with the information gathered regarding their structure and functional relationships over the last decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ayroza G, Ferreira IL, Sayegh RS, Tashima AK, da Silva Junior PI. Juruin: an antifungal peptide from the venom of the Amazonian Pink Toe spider, Avicularia juruensis, which contains the inhibitory cystine knot motif. Front Microbiol. 2012;3:324.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbosa Pelegrini P, Del Sarto RP, Silva ON, Franco OL, Grossi-de-Sa MF. Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int. 2011;2011:250349.

    Article  PubMed  PubMed Central  Google Scholar 

  • Belokoneva OS, Satake H, Mal’tseva EL, Pal’mina NP, Villegas E, Nakajima T, et al. Pore formation of phospholipid membranes by the action of two hemolytic arachnid peptides of different size. Biochim Biophys Acta. 2004;1664(2):182–8.

    Article  CAS  PubMed  Google Scholar 

  • Bowdish DM, Davidson DJ, Hancock RE. A re-evaluation of the role of host defence peptides in mammalian immunity. Curr Protein Pept Sci. 2005;6(1):35–51.

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3(3):238–50.

    Article  CAS  PubMed  Google Scholar 

  • Budnik BA, Olsen JV, Egorov TA, Anisimova VE, Galkina TG, Musolyamov AK, et al. De novo sequencing of antimicrobial peptides isolated from the venom glands of the wolf spider Lycosa singoriensis. J Mass Spectrom. 2004;39(2):193–201.

    Article  CAS  PubMed  Google Scholar 

  • Bulet P, Stocklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev. 2004;198:169–84.

    Article  CAS  PubMed  Google Scholar 

  • Cerovsky V, Slaninova J, Fucik V, Hulacova H, Borovickova L, Jezek R, et al. New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs. Peptides. 2008;29(6):992–1003.

    Article  CAS  PubMed  Google Scholar 

  • Choi SJ, Parent R, Guillaume C, Deregnaucourt C, Delarbre C, Ojcius DM, et al. Isolation and characterization of Psalmopeotoxin I and II: two novel antimalarial peptides from the venom of the tarantula Psalmopoeus cambridgei. FEBS Lett. 2004;572(1–3):109–17.

    Article  CAS  PubMed  Google Scholar 

  • Collection of Anti-Microbial Peptides. Antimicrobial database. 2015. Available from http://www.camp.bicnirrh.res.in/index.php. Accessed 28 July 2015.

  • Corzo G, Villegas E, Gomez-Lagunas F, Possani LD, Belokoneva OS, Nakajima T. Oxyopinins, large amphipathic peptides isolated from the venom of the wolf spider Oxyopes kitabensis with cytolytic properties and positive insecticidal cooperativity with spider neurotoxins. J Biol Chem. 2002;277(26):23627–37.

    Article  CAS  PubMed  Google Scholar 

  • Daffre S, Miranda A, Miranda MTM, Bulet P, Silva Jr PI, Machado A, Fogaça AC, Lorenzini DM, Pereira LS, Fázio MA, Esteves E, Burgierman MR. Peptídeos antibióticos, peptídeos antibióticos produzidos por aracnídeos. Pesq Biotec Ciên Desenv. 2001;23:48–55.

    Google Scholar 

  • Den Hertog AL, Wong Fong Sang HW, Kraayenhof R, Bolscher JG, Van’t Hof W, Veerman EC, et al. Interactions of histatin 5 and histatin 5-derived peptides with liposome membranes: surface effects, translocation and permeabilization. Biochem J. 2004;379(Pt 3):665–72.

    Article  Google Scholar 

  • Dimarcq JL, Bulet P, Hetru C, Hoffmann J. Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers. 1998;47(6):465–77.

    Article  CAS  PubMed  Google Scholar 

  • Dowhan W. Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem. 1997;66:199–232.

    Article  CAS  PubMed  Google Scholar 

  • Dubovskii PV, Vassilevski AA, Samsonova OV, Egorova NS, Kozlov SA, Feofanov AV, et al. Novel lynx spider toxin shares common molecular architecture with defense peptides from frog skin. FEBS J. 2011;278(22):4382–93.

    Article  CAS  PubMed  Google Scholar 

  • Epand RM, Epand RF, Arnusch CJ, Papahadjopoulos-Sternberg B, Wang G, Shai Y. Lipid clustering by three homologous arginine-rich antimicrobial peptides is insensitive to amino acid arrangement and induced secondary structure. Biochim Biophys Acta. 2010;1798(6):1272–80.

    Article  CAS  PubMed  Google Scholar 

  • Escoubas P, Diochot S, Corzo G. Structure and pharmacology of spider venom neurotoxins. Biochimie. 2000;82(9–10):893–907.

    Article  CAS  PubMed  Google Scholar 

  • Estrada G, Villegas E, Corzo G. Spider venoms: a rich source of acylpolyamines and peptides as new leads for CNS drugs. Nat Prod Rep. 2007;24(1):145–61.

    Article  CAS  PubMed  Google Scholar 

  • Falla TJ, Karunaratne DN, Hancock RE. Mode of action of the antimicrobial peptide indolicidin. J Biol Chem. 1996;271(32):19298–303.

    Article  CAS  PubMed  Google Scholar 

  • Ferre R, Melo MN, Correia AD, Feliu L, Bardaji E, Planas M, et al. Synergistic effects of the membrane actions of cecropin-melittin antimicrobial hybrid peptide BP100. Biophys J. 2009;96(5):1815–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox JL. Antimicrobial peptides stage a comeback. Nat Biotechnol. 2013;31(5):379–82.

    Article  CAS  PubMed  Google Scholar 

  • Gordon YJ, Romanowski EG, McDermott AM. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res. 2005;30(7):505–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory K, Mello CM. Immobilization of Escherichia coli cells by use of the antimicrobial peptide cecropin P1. Appl Environ Microbiol. 2005;71(3):1130–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock RE. Peptide antibiotics. Lancet. 1997;349(9049):418–22.

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24(12):1551–7.

    Article  CAS  PubMed  Google Scholar 

  • Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta. 2008;1778(2):357–75.

    Article  CAS  PubMed  Google Scholar 

  • Hurst AC, Gottlieb PA, Martinac B. Concentration dependent effect of GsMTx4 on mechanosensitive channels of small conductance in E. coli spheroplasts. Eur Biophys J. 2009;38(4):415–25.

    Article  CAS  PubMed  Google Scholar 

  • Idiong G, Won A, Ruscito A, Leung BO, Hitchcock AP, Ianoul A. Investigating the effect of a single glycine to alanine substitution on interactions of antimicrobial peptide latarcin 2a with a lipid membrane. European biophysics journal:EBJ. 2011;40(9):1087–100.

    Google Scholar 

  • Ivanov VT, Karelin AA, Philippova MM, Nazimov IV, Pletnev VZ. Hemoglobin as a source of endogenous bioactive peptides: the concept of tissue-specific peptide pool. Biopolymers. 1997;43(2):171–88.

    Article  CAS  PubMed  Google Scholar 

  • Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19(3):491–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung HJ, Kim PI, Lee SK, Lee CW, Eu YJ, Lee DG, et al. Lipid membrane interaction and antimicrobial activity of GsMTx-4, an inhibitor of mechanosensitive channel. Biochem Biophys Res Commun. 2006;340(2):633–8.

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Lee DG, Park Y, Kim HN, Choi BH, Choi CH, Hahm KS. Antibacterial activities of peptides designed as hybrids of antimicrobial peptides. Biotechnol Lett. 2002;24:347–53.

    Article  CAS  Google Scholar 

  • Kim YC, Ludovice PJ, Prausnitz MR. Transdermal delivery enhanced by magainin pore-forming peptide. J Control Release. 2007;122(3):375–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozlov SA, Vassilevski AA, Feofanov AV, Surovoy AY, Karpunin DV, Grishin EV. Latarcins, antimicrobial and cytolytic peptides from the venom of the spider Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. J Biol Chem. 2006;281(30):20983–92.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn-Nentwig L. Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci. 2003;60(12):2651–68.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn-Nentwig L. Cytolytic and antimicrobial peptides in the venom of scorpions and spiders. In: De Lima ME, Pimenta AMC, Martin-Eauclaire MF, Zingali R, Rochat H, editors. Animal toxins: state of the art. Perspectives in health and biotechnology. 1st ed. Belo Horizonte: Editora UFMG; 2009.

    Google Scholar 

  • Kuhn-Nentwig L, Schaller J, Nentwig W. Purification of toxic peptides and the amino acid sequence of CSTX-1 from the multicomponent venom of Cupiennius salei (Araneae: Ctenidae). Toxicon. 1994;32(3):287–302.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn-Nentwig L, Dathe M, Walz A, Schaller J, Nentwig W. Cupiennin 1d*: the cytolytic activity depends on the hydrophobic N-terminus and is modulated by the polar C-terminus. FEBS Lett. 2002;527(1–3):193–8.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn-Nentwig L, Willems J, Seebeck T, Shalaby T, Kaiser M, Nentwig W. Cupiennin 1a exhibits a remarkably broad, non-stereospecific cytolytic activity on bacteria, protozoan parasites, insects, and human cancer cells. Amino Acids. 2011;40(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  • Kuzmenkov AI, Fedorova IM, Vassilevski AA, Grishin EV. Cysteine-rich toxins from Lachesana tarabaevi spider venom with amphiphilic C-terminal segments. Biochim Biophys Acta. 2013;1828(2):724–31.

    Article  CAS  PubMed  Google Scholar 

  • Lai R, Zheng YT, Shen JH, Liu GJ, Liu H, Lee WH, et al. Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides. 2002;23(3):427–35.

    Article  CAS  PubMed  Google Scholar 

  • Mader JS, Hoskin DW. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs. 2006;15(8):933–46.

    Article  CAS  PubMed  Google Scholar 

  • Mateo CR, Gómez J, Villalaín J, Ros JMG. Protein-lipid interactions: new approaches and emerging concepts. 1st ed. Berlin/Heidelberg: Springer; 2006.

    Book  Google Scholar 

  • Miltz J, Rydlo T, Mor A, Polyakov V. Potency evaluation of a dermaseptin S4 derivative for antimicrobial food packaging applications. Packag Technol Sci. 2006;19:345–54.

    Article  CAS  Google Scholar 

  • Miranda A, Miranda MTM, Jouvensal L, Vovelle F, Bulet P, Daffre S. Gomesin: a powerful antimicrobial peptide isolated from the Brazilian tarantula spider Acanthoscurria gomesiana. In: De Lima ME, Pimenta AMC, Martin-Eauclaire MF, Zingali R, Rochat H, editors. Animal toxins: state of the art. Perspectives in health and biotechnology. 1st ed. Belo Horizonte: Editora UFMG; 2009.

    Google Scholar 

  • Neto MT. Aleitamento materno e infecção ou da importância do mesmo na sua Prevenção. Acta Pediátr Port. 2006;1:23–6.

    Google Scholar 

  • Nguyen LT, Chan DI, Boszhard L, Zaat SA, Vogel HJ. Structure-function studies of chemokine-derived carboxy-terminal antimicrobial peptides. Biochim Biophys Acta. 2010;1798(6):1062–72.

    Article  CAS  PubMed  Google Scholar 

  • Niyonsaba F, Someya A, Hirata M, Ogawa H, Nagaoka I. Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J Immunol. 2001;31(4):1066–75.

    Article  CAS  PubMed  Google Scholar 

  • Nomura K, Corzo G. The effect of binding of spider-derived antimicrobial peptides, oxyopinins, on lipid membranes. Biochim Biophys Acta. 2006;1758(9):1475–82.

    Article  CAS  PubMed  Google Scholar 

  • Ohsaki Y, Gazdar AF, Chen HC, Johnson BE. Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res. 1992;52(13):3534–8.

    CAS  PubMed  Google Scholar 

  • Pathan FK, Venkata DA, Panguluri SK. Recent patents on antimicrobial peptides. Recent Pat DNA Gene Seq. 2010;4(1):10–6.

    Article  CAS  PubMed  Google Scholar 

  • Pukala TL, Doyle JR, Llewellyn LE, Kuhn-Nentwig L, Apponyi MA, Separovic F, et al. Cupiennin 1a, an antimicrobial peptide from the venom of the neotropical wandering spider Cupiennius salei, also inhibits the formation of nitric oxide by neuronal nitric oxide synthase. FEBS J. 2007;274(7):1778–84.

    Article  CAS  PubMed  Google Scholar 

  • Remijsen QF, Fontayne A, Verdonck F, Clynen E, Schoofs L, Willems J. The antimicrobial peptide parabutoporin competes with p47(phox) as a PKC-substrate and inhibits NADPH oxidase in human neutrophils. FEBS Lett. 2006;580(26):6206–10.

    Article  CAS  PubMed  Google Scholar 

  • Santos DM, Verly RM, Pilo-Veloso D, de Maria M, de Carvalho MA, Cisalpino PS, et al. LyeTx I, a potent antimicrobial peptide from the venom of the spider Lycosa erythrognatha. Amino Acids. 2010;39(1):135–44.

    Article  CAS  PubMed  Google Scholar 

  • Schittek B, Hipfel R, Sauer B, Bauer J, Kalbacher H, Stevanovic S, et al. Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol. 2001;2(12):1133–7.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt NW, Mishra A, Lai GH, Davis M, Sanders LK, Tran D, et al. Criterion for amino acid composition of defensins and antimicrobial peptides based on geometry of membrane destabilization. J Am Chem Soc. 2011;133(17):6720–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shlyapnikov YM, Andreev YA, Kozlov SA, Vassilevski AA, Grishin EV. Bacterial production of latarcin 2a, a potent antimicrobial peptide from spider venom. Protein Expr Purif. 2008;60(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  • Silva Jr PI, Daffre S, Bulet P. Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. J Biol Chem. 2000;275(43):33464–70.

    Article  CAS  PubMed  Google Scholar 

  • Somkuti GA, Paul M. Enzymatic fragmentation of the antimicrobial peptides casocidin and isracidin by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. Appl Microbiol Biotechnol. 2010;87(1):235–42.

    Article  CAS  PubMed  Google Scholar 

  • Suchyna TM, Tape SE, Koeppe RE, 2nd, Andersen OS, Sachs F, Gottlieb PA. Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature. 2004;430(6996):235–40.

    Google Scholar 

  • Vassilevski AA, Kozlov SA, Samsonova OV, Egorova NS, Karpunin DV, Pluzhnikov KA, et al. Cyto-insectotoxins, a novel class of cytolytic and insecticidal peptides from spider venom. Biochem J. 2008;411(3):687–96.

    Article  CAS  PubMed  Google Scholar 

  • Vora P, Youdim A, Thomas LS, Fukata M, Tesfay SY, Lukasek K, et al. Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. J Immunol. 2004;173(9):5398–405.

    Article  CAS  PubMed  Google Scholar 

  • Vorontsova OV, Egorova NS, Arseniev AS, Feofanov AV. Haemolytic and cytotoxic action of latarcin Ltc2a. Biochimie. 2011;93(2):227–41.

    Article  CAS  PubMed  Google Scholar 

  • Welling MM, Lupetti A, Balter HS, Lanzzeri S, Souto B, Rey AM, et al. 99mTc-labeled antimicrobial peptides for detection of bacterial and Candida albicans infections. J Nucl Med. 2001;42(5):788–94.

    CAS  PubMed  Google Scholar 

  • Wullschleger B, Nentwig W, Kuhn-Nentwig L. Spider venom: enhancement of venom efficacy mediated by different synergistic strategies in Cupiennius salei. The Journal of experimental biology. 2005;208(Pt 11):2115–21.

    Google Scholar 

  • Xu K, Ji Y, Qu X. Purification and characterization of an antibacterial peptide from venom of Lycosa singoriensis. Acta Zool Sin. 1989;35:300–5.

    CAS  Google Scholar 

  • Yan L, Adams ME. Lycotoxins, antimicrobial peptides from venom of the wolf spider Lycosa carolinensis. J Biol Chem. 1998;273(4):2059–66.

    Article  CAS  PubMed  Google Scholar 

  • Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55(1):27–55.

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987;84(15):5449–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–95.

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Kong Y, Wang H, Yan T, Feng F, Bian J, et al. A defensin-like antimicrobial peptide from the venoms of spider, Ornithoctonus hainana. Journal of peptide science : an official publication of the European Peptide Society. 2011;17(7):540–4.

    Google Scholar 

  • Zhu S, Darbon H, Dyason K, Verdonck F, Tytgat J. Evolutionary origin of inhibitor cystine knot peptides. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2003;17(12):1765–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano M. C. Pimenta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Santos, D.M., Reis, P.V., Pimenta, A.M.C. (2016). Antimicrobial Peptides in Spider Venoms. In: Gopalakrishnakone, P., Corzo, G., de Lima, M., Diego-García, E. (eds) Spider Venoms. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6389-0_19

Download citation

Publish with us

Policies and ethics