Skip to main content

Natural Inhibitors of Snake Venom Metallopeptidases

  • Reference work entry
  • First Online:
Toxins and Drug Discovery

Part of the book series: Toxinology ((TOXI))

Abstract

Protein inhibitors of peptidases are widely distributed among animals, plants, and microorganisms. They are important regulatory molecules that function to avoid proteolysis in various biological systems. From the plasma of animals that are naturally resistant to snake envenomation, a special class of peptidase inhibitors has been identified. These inhibitors have antihemorrhagic properties and form inactive noncovalent complexes with snake venom metallopeptidases. In nonresistant animals, these toxic metallopeptidases induce microvascular damage and are responsible for systemic and local hemorrhage, key events in the pathogenesis of viperid envenomation. The inhibitors isolated from mammalian plasma are grouped into the MEROPS I43 family of immunoglobulin -related proteins; those from reptiles show a typical cystatin -like fold and belong to the MEROPS I25C subfamily. The inhibitors show a reversible tight-binding reaction mechanism of inhibition, although due to a lack of three-dimensional information for the enzyme-inhibitor complexes, the structural features that govern the interaction are largely unknown. This review is intended to highlight the latest advances in the field, analyzing future perspectives in the area of natural immunity against snake venom. The discussion will focus on how endogenous protein inhibitors can be used as structural templates, providing valuable insights into the molecular determinants of selective metallopeptidase inhibition. The wide range of natural toxin inhibitors may constitute a rich source of information leading to new possibilities in intervention not only against snake venom metallopeptidases but also against other metzincins, such as mammalian MMPs and ADAMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alber F, Forster F, Korkin D, Topf M, Sali A. Integrating diverse data for structure determination of macromolecular assemblies. Annu Rev Biochem. 2008;77:443–77.

    Article  CAS  PubMed  Google Scholar 

  • Aoki N, Deshimaru M, Terada S. Active fragments of the antihemorrhagic protein HSF from serum of habu (Trimeresurus flavoviridis). Toxicon. 2007;49(5):653–62.

    Article  CAS  PubMed  Google Scholar 

  • Aoki N, Tsutsumi K, Deshimaru M, Terada S. Properties and cDNA cloning of antihemorrhagic factors in sera of Chinese and Japanese mamushi (Gloydius blomhoffi). Toxicon. 2008;51(2):251–61.

    Article  CAS  PubMed  Google Scholar 

  • Aoki N, Deshimaru M, Kihara K, Terada S. Snake fetuin: isolation and structural analysis of new fetuin family proteins from the sera of venomous snakes. Toxicon. 2009;54(4):481–90.

    Article  CAS  PubMed  Google Scholar 

  • Asega AF, Oliveira AK, Menezes MC, Neves-Ferreira AG, Serrano SM. Interaction of Bothrops jararaca venom metalloproteinases with protein inhibitors. Toxicon. 2014;80:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Assakura MT, Silva CA, Mentele R, Camargo AC, Serrano SM. Molecular cloning and expression of structural domains of bothropasin, a P-III metalloproteinase from the venom of Bothrops jararaca. Toxicon. 2003;41(2):217–27.

    Article  CAS  PubMed  Google Scholar 

  • Baramova EN, Shannon JD, Bjarnason JB, Gonias S, Fox JW. Interaction of hemorrhagic metalloproteinases with human a2-macroglobulin. Biochem J. 1990;29(4):1069–74.

    Article  CAS  Google Scholar 

  • Barchan D, Kachalsky S, Neumann D, Vogel Z, Ovadia M, Kochva E, Fuchs S. How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor. Proc Natl Acad Sci U S A. 1992;89(16):7717–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bieth JG. Theoretical and practical aspects of proteinase inhibition kinetics. Methods Enzymol. 1995;248:59–84.

    Article  CAS  PubMed  Google Scholar 

  • Bjarnason JB, Fox JW. Proteolytic specificity and cobalt exchange of hemorrhagic toxin e, a zinc protease isolated from the venom of the western diamondback rattlesnake (Crotalus atrox). Biochemistry. 1983;22(16):3770–8.

    Article  CAS  PubMed  Google Scholar 

  • Bjarnason JB, Fox JW. Hemorrhagic metalloproteinases from snake venoms. Pharmacol Ther. 1994;62(3):325–72.

    Article  CAS  PubMed  Google Scholar 

  • Bode W, Huber R. Structural basis of the endoproteinase-protein inhibitor interaction. Biochim Biophys Acta. 2000;1477(1–2):241–52.

    Article  CAS  PubMed  Google Scholar 

  • Bottazzi B, Doni A, Garlanda C, Mantovani A. An integrated view of humoral innate immunity: pentraxins as a paradigm. Annu Rev Immunol. 2010;28:157–83.

    Article  CAS  PubMed  Google Scholar 

  • Brand GD, Salbo R, Jørgensen TJ, Bloch Jr C, Boeri Erba E, Robinson CV, Tanjoni I, Moura-da-Silva AM, Roepstorff P, Domont GB, Perales J, Valente RH, Neves-Ferreira AG. The interaction of the antitoxin DM43 with a snake venom metalloproteinase analyzed by mass spectrometry and surface plasmon resonance. J Mass Spectrom. 2012;47(5):567–73.

    Article  CAS  PubMed  Google Scholar 

  • Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta. 2010;1803(1):55–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvete JJ. Snake venomics: from the inventory of toxins to biology. Toxicon. 2013;75:44–62.

    Article  CAS  PubMed  Google Scholar 

  • Casewell NR. On the ancestral recruitment of metalloproteinases into the venom of snakes. Toxicon. 2012;60(4):449–54.

    Article  CAS  PubMed  Google Scholar 

  • Casewell NR, Wuster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28(4):219–29.

    Article  PubMed  Google Scholar 

  • Catanese JJ, Kress LF. Isolation from opossum serum of a metalloproteinase inhibitor homologous to human alpha 1B-glycoprotein. Biochemistry. 1992;31:410–8.

    Article  CAS  PubMed  Google Scholar 

  • Cerda-Costa N, Gomis-Ruth FX. Architecture and function of metallopeptidase catalytic domains. Protein Sci. 2014;23(2):123–44.

    Article  CAS  PubMed  Google Scholar 

  • Chapeaurouge A, Martins SM, Holub O, Rocha SL, Valente RH, Neves-Ferreira AG, Ferreira ST, Domont GB, Perales J. Conformational plasticity of DM43, a metalloproteinase inhibitor from Didelphis marsupialis: chemical and pressure-induced equilibrium (un)folding studies. Biochim Biophys Acta. 2009;1794(10):1379–86.

    Article  CAS  PubMed  Google Scholar 

  • Ching AT, Paes Leme AF, Zelanis A, Rocha MM, Furtado Mde F, Silva DA, Trugilho MR, da Rocha SL, Perales J, Ho PL, Serrano SM, Junqueira-de-Azevedo IL. Venomics profiling of Thamnodynastes strigatus unveils matrix metalloproteinases and other novel proteins recruited to the toxin arsenal of rear-fanged snakes. J Proteome Res. 2011;11(2):1152–62.

    Article  CAS  Google Scholar 

  • de Wit CA, Westrom BR. Purification and characterization of alpha 2-, alpha 2-beta- and beta-macroglobulin inhibitors in the hedgehog, Erinaceus europaeus: beta-macroglobulin identified as the plasma antihemorrhagic factor. Toxicon. 1987;25(11):1209–19.

    Article  PubMed  Google Scholar 

  • Deshimaru M, Tanaka C, Fujino K, Aoki N, Terada S, Hattori S, Ohno M. Properties and cDNA cloning of an antihemorrhagic factor (HSF) purified from the serum of Trimeresurus flavoviridis. Toxicon. 2005;46(8):937–45.

    Article  CAS  PubMed  Google Scholar 

  • Domont GB, Perales J, Moussatché H. Natural anti-snake venom proteins. Toxicon. 1991;29(10):1183–94.

    Article  CAS  PubMed  Google Scholar 

  • Drake AW, Myszka DG, Klakamp SL. Characterizing high-affinity antigen/antibody complexes by kinetic- and equilibrium-based methods. Anal Biochem. 2004;328(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  • Escalante T, Franceschi A, Rucavado A, Gutiérrez JM. Effectiveness of batimastat, a synthetic inhibitor of matrix metalloproteinases, in neutralizing local tissue damage induced by BaP1, a hemorrhagic metalloproteinase from the venom of the snake Bothrops asper. Biochem Pharmacol. 2000;60(2):269–74.

    Article  CAS  PubMed  Google Scholar 

  • Escalante T, Rucavado A, Fox JW, Gutiérrez JM. Key events in microvascular damage induced by snake venom hemorrhagic metalloproteinases. J Proteomics. 2011;74(9):1781–94.

    Article  CAS  PubMed  Google Scholar 

  • Farah MF, One M, Novello JC, Toyama MH, Perales J, Moussatché H, Domont GB, Oliveira B, Marangoni S. Isolation of protein factors from opossum (Didelphis albiventris) serum which protect against Bothrops jararaca venom. Toxicon. 1996;34(9):1067–71.

    Article  CAS  PubMed  Google Scholar 

  • Faure G. Natural inhibitors of toxic phospholipases A2. Biochimie. 2000;82(9–10):833–40.

    Article  CAS  PubMed  Google Scholar 

  • Fox JW, Bjarnason J. Metalloproteinase inhibitors. In: Grams F, editor. Enzymes from snake venom. Fort Collins: Alaken, Inc.; 1998. p. 599–632.

    Google Scholar 

  • Fox JW, Serrano SM. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon. 2005;45(8):969–85.

    Article  CAS  PubMed  Google Scholar 

  • Fox JW, Serrano SMT. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J. 2008;275(12):3016–30.

    Article  CAS  PubMed  Google Scholar 

  • Fox JW, Serrano SMT. Snake venom metalloproteinases. In: Mackessy SP, editor. Venoms and toxins of reptiles. Boca Raton: CRC Press; 2010. p. 95–113.

    Google Scholar 

  • Fry BG, Vidal N, van der Weerd L, Kochva E, Renjifo C. Evolution and diversification of the Toxicofera reptile venom system. J Proteomics. 2009;72(2):127–36.

    Article  CAS  PubMed  Google Scholar 

  • Gomes MT, Oliva ML, Lopes MT, Salas CE. Plant proteinases and inhibitors: an overview of biological function and pharmacological activity. Curr Protein Pept Sci. 2011;12(5):417–36.

    Article  CAS  PubMed  Google Scholar 

  • Gomis-Rüth FX. Catalytic domain architecture of metzincin metalloproteases. J Biol Chem. 2009;284(23):15353–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutiérrez JM, Rucavado A, Escalante T, Diaz C. Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. Toxicon. 2005;45(8):997–1011.

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez JM, Lomonte B, León G, Rucavado A, Chaves F, Angulo Y. Trends in snakebite envenomation therapy: scientific, technological and public health considerations. Curr Pharm Des. 2007;13(28):2935–50.

    Article  PubMed  Google Scholar 

  • Gutiérrez JM, Rucavado A, Escalante T. Snake venom metalloproteinases. Biological roles and participation in the pathophysiology of envenomation. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton, FL: CRC Press\Taylor & Francis Group; 2010. p. 115–38.

    Google Scholar 

  • Howes JM, Theakston RD, Laing GD. Neutralization of the haemorrhagic activities of viperine snake venoms and venom metalloproteinases using synthetic peptide inhibitors and chelators. Toxicon. 2007;49(5):734–9.

    Article  CAS  PubMed  Google Scholar 

  • Huntington JA. Natural inhibitors of thrombin. Thromb Haemost. 2014;111(3):583–9.

    Article  CAS  PubMed  Google Scholar 

  • Ishioka N, Takahashi N, Putnam FW. Amino acid sequence of human plasma alpha 1B-glycoprotein: homology to the supergene family. Proc Natl Acad Sci U S A. 1986;83(8):2363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansa SA, Voss RS. Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers. PLoS One. 2011;6(6), e20997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji MK, Shi Y, Xu JW, Lin X, Lin JY. Recombinant snake venom metalloproteinase inhibitor BJ46a inhibits invasion and metastasis of B16F10 and MHCC97H cells through reductions of matrix metalloproteinases 2 and 9 activities. Anticancer Drugs. 2013;24(5):461–72.

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Thornton JM. Principles of protein-protein interactions. Proc Natl Acad Sci U S A. 1996;93(1):13–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurgilas PB, Neves-Ferreira AGC, Domont GB, Moussatché H, Perales J. Detection of an antibothropic fraction in opossum (Didelphis marsupialis) milk that neutralizes Bothrops jararaca venom. Toxicon. 1999;37(1):167–72.

    Article  CAS  PubMed  Google Scholar 

  • Jurgilas PB, Neves-Ferreira AGC, Domont GB, Perales J. PO41, a snake venom metalloproteinase inhibitor isolated from Philander opossum serum. Toxicon. 2003;42(6):621–8.

    Article  CAS  PubMed  Google Scholar 

  • Jurgilas PB, De Meis J, Valente RH, Neves-Ferreira AGC, Cruz DM, Oliveira DAF, Savino W, Domont GB, Perales J, inventors; Use of DM43 and its fragments as matrix metalloproteinases inhibitor. United States patent WO 2005/087252 A1. 2005.

    Google Scholar 

  • Kellermann J, Haupt H, Auerswald EA, Muller-Ester W. The arrangement of disulfide loops in human alpha 2-HS glycoprotein similarity to the disulfide bridge structures of cystatins and kininogens. J Biol Chem. 1989;264(24):14121–8.

    CAS  PubMed  Google Scholar 

  • Kinkawa K, Shirai R, Watanabe S, Toriba M, Hayashi K, Ikeda K, Inoue S. Up-regulation of the expressions of phospholipase A2 inhibitors in the liver of a venomous snake by its own venom phospholipase A2. Biochem Biophys Res Commun. 2010;395(3):377–81.

    Article  CAS  PubMed  Google Scholar 

  • Kress LF. The action of snake venom metalloproteinases on plasma proteinase inhibitors. In: Pirkle H, Markland FS, editors. Hemostasis and animal venoms. New York: Marcel Dekker; 1988. p. 335–48.

    Google Scholar 

  • Laskowski Jr M, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626.

    Article  CAS  PubMed  Google Scholar 

  • León IR, Neves-Ferreira AGC, Rocha SLG, Trugilho MRO, Perales J, Valente RH. Using mass spectrometry to explore the neglected glycan moieties of the antiophidic proteins DM43 and DM64. Proteomics. 2012;12(17):2753–65.

    Article  PubMed  CAS  Google Scholar 

  • Lizano S, Domont GB, Perales J. Natural phospholipase A2 myotoxin inhibitor proteins from snakes, mammals and plants. Toxicon. 2003;42(8):963–77.

    Article  CAS  PubMed  Google Scholar 

  • Luna MS, Valente RH, Perales J, Vieira ML, Yamanouye N. Activation of Bothrops jararaca snake venom gland and venom production: a proteomic approach. J Proteomics. 2013;94:460–72.

    Article  CAS  PubMed  Google Scholar 

  • Markland Jr FS, Swenson S. Snake venom metalloproteinases. Toxicon. 2013;62:3–18.

    Article  CAS  PubMed  Google Scholar 

  • McKeller MR, Perez JC. The effects of Western Diamondback Rattlesnake (Crotalus atrox) venom on the production of antihemorrhagins and/or antibodies in the Virginia opossum (Didelphis virginiana). Toxicon. 2002;40(4):427–39.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee AK, Mackessy SP, Dutta S. Characterization of a Kunitz-type protease inhibitor peptide (Rusvikunin) purified from Daboia russelii russelii venom. Int J Biol Macromol. 2014;67:154–62.

    Article  CAS  PubMed  Google Scholar 

  • Neumann D, Barchan D, Horowitz M, Kochva E, Fuchs S. Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the a subunit. Proc Natl Acad Sci U S A. 1989;86:7255–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neves-Ferreira AGC, Perales J, Ovadia M, Moussatché H, Domont GB. Inhibitory properties of the antibothropic complex from the South American opossum (Didelphis marsupialis) serum. Toxicon. 1997;35(6):849–63.

    Article  CAS  PubMed  Google Scholar 

  • Neves-Ferreira AGC, Cardinale N, Rocha SLG, Perales J, Domont GB. Isolation and characterization of DM40 and DM43, two snake venom metalloproteinase inhibitors from Didelphis marsupialis serum. Biochim Biophys Acta. 2000;1474(3):309–20.

    Article  CAS  PubMed  Google Scholar 

  • Neves-Ferreira AGC, Perales J, Fox JW, Shannon JD, Makino DL, Garratt RC, Domont GB. Structural and functional analyses of DM43, a snake venom metalloproteinase inhibitor from Didelphis marsupialis serum. J Biol Chem. 2002;277(15):13129–37.

    Article  CAS  PubMed  Google Scholar 

  • Neves-Ferreira AGC, Valente RH, Perales J, Domont GB. Natural inhibitors: innate immunity to snake venoms. In: Mackessy SP, editor. Reptile venoms and toxins. New York: Taylor & Francis/CRC Press; 2010. p. 259–84.

    Google Scholar 

  • Ochieng J, Chaudhuri G. Cystatin superfamily. J Health Care Poor Underserved. 2010;21(1 Suppl):51–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Odell GV, Ferry PC, Vick LM, Fenton AW, Decker LS, Cowell RL, Ownby CL, Gutiérrez JM. Citrate inhibition of snake venom proteases. Toxicon. 1998;36(12):1801–6.

    Article  CAS  PubMed  Google Scholar 

  • Omori-Satoh T, Yamakawa Y, Mebs D. The antihemorrhagic factor, erinacin, from the European hedgehog (Erinaceus europaeus), a metalloprotease inhibitor of large molecular size possessing ficolin/opsonin P35 lectin domains. Toxicon. 2000;38(11):1561–80.

    Article  CAS  PubMed  Google Scholar 

  • Paine MJ, Desmond HP, Theakston RD, Crampton JM. Purification, cloning, and molecular characterization of a high molecular weight hemorrhagic metalloprotease, jararhagin, from Bothrops jararaca venom. Insights into the disintegrin gene family. J Biol Chem. 1992;267(32):22869–76.

    CAS  PubMed  Google Scholar 

  • Perales J, Domont GB. Are inhibitors of metalloproteinases, phospholipases A2 and myotoxins members of the innate immune system ? In: Ménez A, editor. Perspectives in molecular toxinology. Chichester: Wiley; 2002. p. 435–56.

    Google Scholar 

  • Perales J, Muñoz R, Moussatché H. Isolation and partial characterization of a protein fraction from the opossum (Didelphis marsupialis) serum, with protecting property against the Bothrops jararaca snake venom. An Acad Bras Cienc. 1986;58(1):155–62.

    CAS  PubMed  Google Scholar 

  • Perales J, Neves-Ferreira AGC, Valente RH, Domont GB. Natural inhibitors of snake venom hemorrhagic metalloproteinases. Toxicon. 2005;45(8):1013–20.

    Article  CAS  PubMed  Google Scholar 

  • Phisalix M. Animaux Venimeux et Venins: la fonction venimeuse chez tous les animaux; les appareils venimeux; les venins et leurs propriétés; les fonctions et usages des venins; l'envenimation et son traitement. Paris: Masson & Cie; 1922.

    Book  Google Scholar 

  • Portes-Junior JA, Yamanouye N, Carneiro SM, Knittel PS, Sant'Anna SS, Nogueira FC, Junqueira M, Magalhães GS, Domont GB, Moura-da-Silva AM. Unraveling the processing and activation of snake venom metalloproteinases. J Proteome Res. 2014;13(7):3338–48.

    Article  CAS  PubMed  Google Scholar 

  • Qi ZQ, Yonaha K, Tomihara Y, Toyama S. Characterization of the antihemorrhagic factors of mongoose (Herpestes edwardsii). Toxicon. 1994;32(11):1459–69.

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND. Peptidase inhibitors in the MEROPS database. Biochimie. 2010;92(11):1463–83.

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND, Tolle DP, Barrett AJ. Evolutionary families of peptidase inhibitors. Biochem J. 2004;378(Pt 3):705–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawlings ND, Waller M, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2014;42:D503–9.

    Article  CAS  PubMed  Google Scholar 

  • Rocha SL, Lomonte B, Neves-Ferreira AGC, Trugilho MRO, Junqueira-de-Azevedo IL, Ho PL, Domont GB, Gutiérrez JM, Perales J. Functional analysis of DM64, an antimyotoxic protein with immunoglobulin-like structure from Didelphis marsupialis serum. Eur J Biochem. 2002;269(24):6052–62.

    Article  CAS  PubMed  Google Scholar 

  • Rocha SL, Neves-Ferreira AG, Trugilho MR, Chapeaurouge A, León IR, Valente RH, Domont GB, Perales J. Crotalid snake venom subproteomes unraveled by the antiophidic protein DM43. J Proteome Res. 2009;8(5):2351–60.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez EF, Schneider FS, Yarleque A, Borges MH, Richardson M, Figueiredo SG, Evangelista KS, Eble JA. The novel metalloproteinase atroxlysin-I from Peruvian Bothrops atrox (Jergon) snake venom acts both on blood vessel ECM and platelets. Arch Biochem Biophys. 2010;496(1):9–20.

    Article  PubMed  CAS  Google Scholar 

  • Scott CJ, Taggart CC. Biologic protease inhibitors as novel therapeutic agents. Biochimie. 2010;92(11):1681–8.

    Article  CAS  PubMed  Google Scholar 

  • Shimokawa K, Jia LG, Wang XM, Fox JW. Expression, activation, and processing of the recombinant snake venom metalloproteinase, pro-atrolysin E. Arch Biochem Biophys. 1996;335(2):283–94.

    Article  CAS  PubMed  Google Scholar 

  • Shioi N, Narazaki M, Terada S. Novel function of antihemorrhagic factor HSF as an SSP-binding protein in Habu (Trimeresurus flavoviridis). Fukuoka Univ Sci Rep. 2011;41:177–84.

    CAS  Google Scholar 

  • Shioi N, Ogawa E, Mizukami Y, Abe S, Hayashi R, Terada S. Small serum protein-1 changes the susceptibility of an apoptosis-inducing metalloproteinase HV1 to a metalloproteinase inhibitor in habu snake (Trimeresurus flavoviridis). J Biochem. 2013;153(1):121–9.

    Article  CAS  PubMed  Google Scholar 

  • Shirai R, Hirano F, Ohkura N, Ikeda K, Inoue S. Up-regulation of the expression of leucine-rich alpha2-glycoprotein in hepatocytes by the mediators of acute-phase response. Biochem Biophys Res Commun. 2009;382(4):776–9.

    Article  CAS  PubMed  Google Scholar 

  • Smith DK, Xue H. Sequence profiles of immunoglobulin and immunoglobulin-like domains. J Mol Biol. 1997;274(4):530–45.

    Article  CAS  PubMed  Google Scholar 

  • Sottrup-Jensen L, Stepanik TM, Kristensen T, Wierzbicki DM, Jones CM, Lonblad PB, Magnusson S, Petersen TE. Primary structure of human alpha 2-macroglobulin V the complete structure. J Biol Chem. 1984;259(13):8318–27.

    CAS  PubMed  Google Scholar 

  • Takeda S, Igarashi T, Mori H, Araki S. Crystal structures of VAP1 reveal ADAMs' MDC domain architecture and its unique C-shaped scaffold. EMBO J. 2006;25(11):2388–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tallant C, Marrero A, Gomis-Rüth FX. Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta. 2010;1803(1):20–8.

    Article  CAS  PubMed  Google Scholar 

  • Tanjoni I, Butera D, Bento L, Della-Casa MS, Marques-Porto R, Takehara HA, Gutiérrez JM, Fernandes I, Moura-da-Silva AM. Snake venom metalloproteinases: structure/function relationships studies using monoclonal antibodies. Toxicon. 2003;42(7):801–8.

    Article  CAS  PubMed  Google Scholar 

  • Terra RMS, Pinto AFM, Guimarães JA, Fox JW. Proteomic profiling of snake venom metalloproteinases (SVMPs): insights into venom induced pathology. Toxicon. 2009;54(6):836–44.

    Article  CAS  PubMed  Google Scholar 

  • Thwin MM, Gopalakrishnakone P. Snake envenomation and protective natural endogenous proteins: a mini review of the recent developments (1991–1997). Toxicon. 1998;36(11):1471–82.

    Article  CAS  PubMed  Google Scholar 

  • Udby L, Sorensen OE, Pass J, Johnsen AH, Behrendt N, Borregaard N, Kjeldsen L. Cysteine-rich secretory protein 3 is a ligand of alpha1B-glycoprotein in human plasma. Biochemistry. 2004;43(40):12877–86.

    Article  CAS  PubMed  Google Scholar 

  • Udby L, Johnsen AH, Borregaard N. Human CRISP-3 binds serum alpha1B-glycoprotein across species. Biochim Biophys Acta. 2010;1800(4):481–5.

    Article  CAS  PubMed  Google Scholar 

  • Valente RH, Dragulev B, Perales J, Fox JW, Domont GB. BJ46a, a snake venom metalloproteinase inhibitor. Isolation, characterization, cloning and insights into its mechanism of action. Eur J Biochem. 2001;268(10):3042–52.

    Article  CAS  PubMed  Google Scholar 

  • Valente RH, Guimarães PR, Junqueira M, Neves-Ferreira AGC, Soares MR, Chapeaurouge A, Trugilho MRO, León IR, Rocha SLG, Oliveira-Carvalho AL, Wermelinger LS, Dutra DL, Leão LI, Junqueira-de-Azevedo IL, Ho PL, Zingali RB, Perales J, Domont GB. Bothrops insularis venomics: a proteomic analysis supported by transcriptomic-generated sequence data. J Proteomics. 2009a;72(2):241–55.

    Article  CAS  PubMed  Google Scholar 

  • Valente RH, Neves-Ferreira AGC, Caffarena ER, Domont GB, Perales J. Snake venom metalloproteinase inhibitors (SVMPIs): an overview and future perspectives. In: Lima ME, Pimenta AMC, Martin-Eauclaire MF, Zingali R, Rochat H, editors. Animal toxins: state of the art perspectives on health and biotechnology. Belo Horizonte: Editora UFMG; 2009b. p. 547–58.

    Google Scholar 

  • Valente RH, Nicolau CA, Perales J, Neves-Ferreira AGC. Snake venom proteopeptidomics: what lies behind the curtain. In: Gopalakrishnakone P, editor. Handbooks of toxinology. Dordrecht: Springer; 2014.

    Google Scholar 

  • Villalta-Romero F, Gortat A, Herrera AE, Arguedas R, Quesada J, de Melo RL, Calvete JJ, Montero M, Murillo R, Rucavado A, Gutiérrez JM, Perez-Paya E. Identification of new snake venom metalloproteinase inhibitors using compound screening and rational peptide design. ACS Med Chem Lett. 2012;3(7):540–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss RS, Jansa SA. Snake-venom resistance as a mammalian trophic adaptation: lessons from didelphid marsupials. Biol Rev Camb Philos Soc. 2012;87(4):822–37.

    Article  PubMed  Google Scholar 

  • Weinstein SA, Smith TL, Kardong KV. Reptile venom glands. Form, function, and future. In: Mackessy SP, editor. Venoms and toxins of reptiles. Boca Raton, FL: CRC Press/Taylor & Francis; 2010. p. 65–91.

    Google Scholar 

  • Williams AF, Barclay AN. The immunoglobulin superfamily-domains for cell surface recognition. Annu Rev Immunol. 1988;6:381–405.

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa Y, Omori-Satoh T. Primary structure of the antihemorrhagic factor in serum of the Japanese Habu: a snake venom metalloproteinase inhibitor with a double-headed cystatin domain. J Biochem. 1992;112(5):583–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We are grateful to Heloisa M. N. Diniz (Image Production and Treatment Service – IOC/Fiocruz) for producing the artwork for the table and figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana G. C. Neves-Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Neves-Ferreira, A.G.C., Valente, R.H., Domont, G.B., Perales, J. (2017). Natural Inhibitors of Snake Venom Metallopeptidases. In: Cruz, L., Luo, S. (eds) Toxins and Drug Discovery. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6452-1_19

Download citation

Publish with us

Policies and ethics