Skip to main content

Computational Approaches for Animal Toxins to Aid Drug Discovery

  • Reference work entry
  • First Online:
Toxins and Drug Discovery

Part of the book series: Toxinology ((TOXI))

  • 1106 Accesses

Abstract

Organisms are endowed with mystical strategies for survival in nature. These strategies help them strike a unique balance in driving and combating forces of life and death. What exists as an integral part one organism’s defense may be capable of consuming the life of others. History of research in toxinology suggests that mankind has been long in fascination of animal toxins for simulating natural phenomena in attempts to design biological interventions. These comprise both preventive and therapeutic approaches targeted at gaining knowledge and developing novel drugs. With advances in technology and high-throughput screening, the development of toxin-based drugs is being facilitated by computational methods in tandem with experimental studies. In this chapter, these widely employed techniques including docking, molecular dynamics, Brownian dynamics, and structure–activity relationship studies have been discussed. Their specific contributions in deciphering toxin–target interactions as well as their effects have been elucidated using a range of animal toxin examples with some future directions. Altogether, this comprehensive-yet-compact organization of information on toxinology is aimed at bringing forth the readers a panoramic view of computational approaches for drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida DD, Torres TM, Barbosa EG, Lima JP, de Freitas Fernandes-Pedrosa M. Molecular approaches for structural characterization of a new potassium channel blocker from Tityus stigmurus venom: cDNA cloning, homology modeling, dynamic simulations and docking. Biochem Biophys Res Commun. 2013;430(1):113–8.

    Article  CAS  PubMed  Google Scholar 

  • Alvarenga LM, Machado de Avila RA, Amim PR, Martins MS, Kalapothakis E, de Lima ME, Santos RG, Granier C, Chávez-Olórtegui C. Molecular characterization of a neutralizing murine monoclonal antibody against Tityus serrulatus scorpion venom. Toxicon. 2005;46(6):664–761.

    Article  CAS  PubMed  Google Scholar 

  • Ambure P, Kar S, Roy K. Pharmacophore mapping-based virtual screening followed by molecular docking studies in search of potential acetylcholinesterase inhibitors as anti-Alzheimer’s agents. Biosystems. 2014;116:10–20.

    Article  CAS  PubMed  Google Scholar 

  • Arafat AS, Arun A, Ilamathi M, Asha J, Sivashankari PR, D’Souza CJ, Sivaramakrishnan V, Dhananjaya BL. Homology modeling, molecular dynamics and atomic level interaction study of snake venom 5′ nucleotidase. J Mol Model. 2014;20(3):2156.

    Article  PubMed  Google Scholar 

  • Bende NS, Kang E, Herzig V, Bosmans F, Nicholson GM, Mobli M, King GF. The insecticidal neurotoxin Aps III is an atypical knottin peptide that potently blocks insect voltage-gated sodium channels. Biochem Pharmacol. 2013;85(10):1542–54.

    Article  CAS  PubMed  Google Scholar 

  • Chavan SG, Deobagkar DD. In silico molecular interaction analysis of LTNF peptide-LT10 with snake venom enzymes. Protein Pept Lett. 2014;21:646–56.

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Chung SH. Molecular dynamics simulations of scorpion toxin recognition by the Ca2+-activated potassium channel KCa3.1. Biophys J. 2013;105(8):1829–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen PC, Kuyucak S. Developing a comparative docking protocol for the prediction of peptide selectivity profiles: investigation of potassium channel toxins. Toxins (Basel). 2012;4(2):110–38.

    Article  CAS  Google Scholar 

  • Chen L, Morrow JK, Tran HT, Phatak SS, Du-Cuny L, Zhang S. From laptop to benchtop to bedside: structure-based drug design on protein targets. Curr Pharm Des. 2012;18(9):1217–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Robinson A, Chung SH. Mechanism of μ-conotoxin PIIIA binding to the voltage-gated Na+ channel NaV1.4. PLoS One. 2014;9(3):e93267.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen L, Karbat I, Gilles N, Ilan N, Benveniste M, Gordon D, Gurevitz M. Common features in the functional surface of scorpion beta-toxins and elements that confer specificity for insect and mammalian voltage-gated sodium channels. J Biol Chem. 2005;280(6):5045–53.

    Article  CAS  PubMed  Google Scholar 

  • Cui M, Shen J, Briggs JM, Luo X, Tan X, Jiang H, Chen K, Ji R. Brownian dynamics simulations of interaction between scorpion toxin Lq2 and potassium ion channel. Biophys J. 2001;80(4):1659–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui M, Shen J, Briggs JM, Fu W, Wu J, Zhang Y, Luo X, Chi Z, Ji R, Jiang H, Chen K. Brownian dynamics simulations of the recognition of the scorpion toxin P05 with the small-conductance calcium-activated potassium channels. J Mol Biol. 2002;318(2):417–28.

    Article  CAS  PubMed  Google Scholar 

  • Cushman DW, Ondetti MA. History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension. 1991;17(4):589–92.

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Chua PJ, Bay BH, Gopalakrishnakone P. Scorpion venoms as a potential source of novel cancer therapeutic compounds. Exp Biol Med (Maywood). 2014;239(4):387–93.

    Article  Google Scholar 

  • Elcock AH, Gabdoulline RR, Wade RC, McCammon JA. Computer simulation of protein-protein association kinetics: acetylcholinesterase-fasciculin. J Mol Biol. 1999;291(1):149–62.

    Article  CAS  PubMed  Google Scholar 

  • Escoubas P, Sollod B, King GF. Venom landscapes: mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach. Toxicon. 2006;47(6):650–63.

    Article  CAS  PubMed  Google Scholar 

  • Gabdoulline RR, Wade RC. Brownian dynamics simulation of protein-protein diffusional encounter. Methods. 1998;14(3):329–41.

    Article  CAS  PubMed  Google Scholar 

  • Göke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, Göke B. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem. 1993;268(26):19650–5.

    PubMed  Google Scholar 

  • Gordon D, Chen R, Chung S-H. Computational methods of studying the binding of toxins from venomous animals to biological ion channels: theory and applications. Physiol Rev. 2013;93(2):767–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan RJ, Wang M, Wang D, Wang DC. A new insect neurotoxin AngP1 with analgesic effect from the scorpion Buthus martensii Karsch: purification and characterization. J Pept Res. 2001;58(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  • Hama A, Sagen J. Antinociceptive effects of the marine snail peptides conantokin-G and conotoxin MVIIA alone and in combination in rat models of pain. Neuropharmacology. 2009;56(2):556–63.

    Article  CAS  PubMed  Google Scholar 

  • He Q, Han W, He Q, Huo L, Zhang J, Lin Y, Chen P, Liang S. ATDB 2.0: a database integrated toxin-ion channel interaction data. Toxicon. 2010;56(4):644–7.

    Article  CAS  PubMed  Google Scholar 

  • Hellberg S, Kem WR. Quantitative structure-activity relationships for sea anemone polypeptide toxins. Int J Pept Protein Res. 1990;36(5):440–4.

    Article  CAS  PubMed  Google Scholar 

  • Herzig V, Wood DL, Newell F, Chaumeil PA, Kaas Q, Binford GJ, Nicholson GM, Gorse D, King GF. ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures. Nucleic Acids Res. 2011;39(Database issue):D653–7.

    Article  CAS  PubMed  Google Scholar 

  • Hilder TA, Chung SH. Conductance properties of the inwardly rectifying channel, Kir3.2: molecular and Brownian dynamics study. Biochim Biophys Acta. 2013;1828(2):471–8.

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Tucker KR, Putzier I, Huertas MA, Horn JP, Canavier CC, Levitan ES, Shepard PD. Functional characterization of ether-à-go-go-related gene potassium channels in midbrain dopamine neurons – implications for a role in depolarization block. Eur J Neurosci. 2012;36(7):2906–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jungo F, Bairoch A. Tox-Prot, the toxin protein annotation program of the Swiss-Prot protein knowledgebase. Toxicon. 2005;45(3):293–301.

    Article  CAS  PubMed  Google Scholar 

  • Jungo F, Estreicher A, Bairoch A, Bougueleret L, Xenarios I. Animal toxins: how is complexity represented in databases? Toxins (Basel). 2010;2(2):262–82.

    Article  Google Scholar 

  • Kaas Q, Westermann JC, Halai R, Wang CK, Craik DJ. ConoServer, a database for conopeptide sequences and structures. Bioinformatics. 2008;24(3):445–6.

    Article  CAS  PubMed  Google Scholar 

  • Kini RM, Fox JW. Milestones and future prospects in snake venom research. Toxicon. 2013;62:1–2.

    Article  CAS  PubMed  Google Scholar 

  • Kolusheva S, Lecht S, Derazon Y, Jelinek R, Lazarovici P. Pardaxin, a fish toxin peptide interaction with a biomimetic phospholipid/polydiacetylene membrane assay. Peptides. 2008;29(9):1620–5.

    Article  CAS  PubMed  Google Scholar 

  • Kularatne SA, Senanayake N. Venomous snake bites, scorpions, and spiders. Handb Clin Neurol. 2014;120(66):987–1001.

    Article  CAS  PubMed  Google Scholar 

  • Lim E, Pon A, Djoumbou Y, Knox C, Shrivastava S, Guo AC, Neveu V, Wishart DS. T3DB: a comprehensively annotated database of common toxins and their targets. Nucleic Acids Res. 2010;38(Database issue):D781–6.

    Article  CAS  PubMed  Google Scholar 

  • Lu SH, Wu JW, Liu HL, Zhao JH, Liu KT, Chuang CK, Lin HY, Tsai WB, Ho Y. The discovery of potential acetylcholinesterase inhibitors: a combination of pharmacophore modeling, virtual screening, and molecular docking studies. J Biomed Sci. 2011;21(18):8.

    Article  Google Scholar 

  • Mondal S, Babu RM, Bhavna R, Ramakumar S. In silico detection of binding mode of J-superfamily conotoxin pl14a with Kv1.6 channel. In Silico Biol. 2007;7(2):175–86.

    CAS  PubMed  Google Scholar 

  • Morris GM, Lim-Wilby M. Molecular docking. Methods Mol Biol. 2008;443:365–82.

    Article  CAS  PubMed  Google Scholar 

  • Muttenthaler M, Akondi KB, Alewood PF. Structure-activity studies on alpha-conotoxins. Curr Pharm Des. 2011;17(38):4226–41.

    Article  CAS  PubMed  Google Scholar 

  • Nikouee A, Khabiri M, Grissmer S, Ettrich R. Charybdotoxin and margatoxin acting on the human voltage-gated potassium channel hKv1.3 and its H399N mutant: an experimental and computational comparison. J Phys Chem B. 2012;116(17):5132–40.

    Article  CAS  PubMed  Google Scholar 

  • Nirthanan S, Gwee MC. Three-finger alpha-neurotoxins and the nicotinic acetylcholine receptor, forty years on. J Pharm Sci. 2004;94(1):1–17.

    Article  CAS  Google Scholar 

  • Pietra F. Docking and MD simulations of the interaction of the tarantula peptide psalmotoxin-1 with ASIC1a channels using a homology model. J Chem Inf Model. 2009;49(4):972–7.

    Article  CAS  PubMed  Google Scholar 

  • Qadri YJ, Berdiev BK, Song Y, Lippton HL, Fuller CM, Benos DJ. Psalmotoxin-1 docking to human acid-sensing ion channel-1. J Biol Chem. 2009;284(26):17625–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radić Z, Kirchhoff PD, Quinn DM, McCammon JA, Taylor P. Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase. Distinctions between active center ligands and fasciculin. J Biol Chem. 1997;272(37):23265–77.

    Article  PubMed  Google Scholar 

  • Romeo C, Di Francesco L, Oliverio M, Palazzo P, Massilia GR, Ascenzi P, Polticelli F, Schininà ME. Conus ventricosus venom peptides profiling by HPLC-MS: a new insight in the intraspecific variation. J Sep Sci. 2008;31(3):488–98.

    Article  CAS  PubMed  Google Scholar 

  • Sudandiradoss C, George PDC, Rajasekaran R, Purohit R, Ramanathan K, Sethumadhavan R. Analysis of binding residues between scorpion neurotoxins and D2 dopamine receptor: a computational docking study. Comput Biol Med. 2008;38(10):1056–67.

    Article  CAS  PubMed  Google Scholar 

  • Van Der Haegen A, Peigneur S, Tytgat J. Importance of position 8 in μ-conotoxin KIIIA for voltage-gated sodium channel selectivity. FEBS J. 2011;278(18):3408–18.

    Article  Google Scholar 

  • Verdier L, Al-Sabi A, Rivier JE, Olivera BM, Terlau H, Carlomagno T. Identification of a novel pharmacophore for peptide toxins interacting with K+ channels. J Biol Chem. 2005;280(22):21246–55.

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Cao Z, Yi H, Jiang D, Mao X, Liu H, Li W. Simulation of the interaction between ScyTx and small conductance calcium-activated potassium channel by docking and MM-PBSA. Biophys J. 2004;87(1):105–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi H, Qiu S, Wu Y, Li W, Wang B. Differential molecular information of maurotoxin peptide recognizing IK(Ca) and Kv1.2 channels explored by computational simulation. BMC Struct Biol. 2011;11:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarrabi M, Naderi-Manesh H. The investigation of interactions of kappa-Hefutoxin1 with the voltage-gated potassium channels: a computational simulation. Proteins. 2008;71(3):1441–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanta Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Pai, P.P., Mondal, S. (2017). Computational Approaches for Animal Toxins to Aid Drug Discovery. In: Cruz, L., Luo, S. (eds) Toxins and Drug Discovery. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6452-1_20

Download citation

Publish with us

Policies and ethics