Skip to main content

Si Based Magnetic Semiconductors

  • Reference work entry
Handbook of Spintronics

Abstract

The efforts over the past decade to identify and characterize magnetic semiconducting systems that would be compatible with present-day silicon technologies are reviewed. Investigations that have explored transition metal doping of the group IV semiconductors silicon and germanium are discussed along with intermetallic compounds such as silicides and germanides that may play the role of a magnetic semiconducting source of polarized electrons. Thin films and nanostructures of these materials have been grown by a number of synthesis techniques, and the resulting structural properties, including the important issue of homogeneity of dopants, are critically surveyed. The resulting magnetic and carrier transport properties are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Antiferromagnetic

CVD:

Chemical vapor deposition

FC:

Field cooled

FM:

Ferromagnetic

HM:

Helimagnetic

HRTEM:

High-resolution transmission electron microscopy

MBE:

Molecular beam epitaxy

MFM:

Magnetic force microscopy

PLD:

Pulsed laser deposition

RDE:

Reactive deposition epitaxy

SPE:

Solid-phase epitaxy

SQUID:

Superconducting quantum interference device

STEM:

Scanning transmission electron microscopy

STM:

Scanning tunneling microscopy

T c :

Curie temperature

TEM:

Transmission electron microscopy

TM :

Transition metal

XRD:

X-ray diffraction

ZFC:

Zero field cooled

α:

Amorphous

μB :

Bohr magneton

ρ:

Resistivity

References

  1. Cheng JL, Wu MW, Fabian J (2010) Theory of the spin relaxation of conduction electrons in silicon. Phys Rev Lett 104:016601

    Article  ADS  Google Scholar 

  2. Appelbaum I, Huang BQ, Monsma DJ (2007) Electronic measurement and control of spin transport in silicon. Nature 447:295–298

    Article  ADS  Google Scholar 

  3. Huang BQ, Monsma DJ, Appelbaum I (2007) Coherent spin transport through a 350 micron thick silicon wafer. Phys Rev Lett 99:177209

    Article  ADS  Google Scholar 

  4. Huang BQ, Jang H-J, Appelbaum I (2008) Geometric dephasing-limited Hanle effect in long-distance lateral silicon spin transport devices. Appl Phys Lett 93:162508

    Article  ADS  Google Scholar 

  5. Lepine DJ (1970) Spin resonance of localized and delocalized electrons in phosphorus-doped silicon between 20 and 30 degrees K. Phys Rev B 2:24292439

    Article  Google Scholar 

  6. Lancaster G, van Wyk JA, Schneider EE (1964) Spin-lattice relaxation of conduction electrons in silicon. Proc Phys Soc 84:19–24

    Article  ADS  Google Scholar 

  7. Ochiai Y, Matsuura E (1976) ESR in heavily doped n-type silicon near a metal-nonmetal transition. Phys Status Solidi A 38:243–252

    Article  ADS  Google Scholar 

  8. Quirt JD, Marko JR (1972) Absolute spin susceptibilities and other ESR parameters of heavily doped n-type silicon. 1. Metallic samples. Phys Rev B 5:1716–1728

    Article  ADS  Google Scholar 

  9. Pifer JH (1975) Microwave conductivity and conduction-electron spin-resonance linewidth of heavily doped Si:P and Si:As. Phys Rev B 12:4391–4402

    Article  ADS  Google Scholar 

  10. Kennedy TA, Pifer JH (1975) Electron-paramagnetic-resonance study of metallic Si-P with iron. Phys Rev B 11:2017

    Article  ADS  Google Scholar 

  11. Ue H, Maekawa S (1971) Electron-spin-resonance studies of heavily phosphorus-doped silicon. Phys Rev B 3:4232–4238

    Article  ADS  Google Scholar 

  12. Fabian J, Matos-Abiague A, Ertler C, Stano P, Zutic I (2007) Semiconductor spintronics. Acta Phys Slovaca 57:565–907

    Article  ADS  Google Scholar 

  13. Huang B, Monsma DJ, Appelbaum I (2007) Experimental realization of a silicon spin field-effect transistor. Appl Phys Lett 91:072501

    Article  ADS  Google Scholar 

  14. Lu Y, Li J, Appelbaum I (2011) Spin-polarized transient electron trapping in phosphorus-doped silicon. Phys Rev Lett 106:217202

    Article  ADS  Google Scholar 

  15. Lu Y, Appelbaum I (2010) Reverse Schottky-asymmetry spin current detectors. Appl Phys Lett 97:162501

    Article  ADS  Google Scholar 

  16. Kikkawa JM, Awschalom DD (1998) Resonant spin amplification in n-type GaAs. Phys Rev Lett 80:4313–4316

    Article  ADS  Google Scholar 

  17. Schmidt G, Ferrand D, Molenkamp W, Filip AT, van Wees BJ (2000) Fundamental obstacle for electrical spin injection from into a diffusive semiconductor. Phys Rev B 62:R4790–R4793

    Google Scholar 

  18. Kiziroglou ME (2005) Electrodeposition of Ni-Si Schottky barriers. IEEE Trans Magn 41:2639–2641

    Article  ADS  Google Scholar 

  19. Maeda Y, Hamaya K, Yamada S, Ando Y, Yamane K, Miyao M (2010) High-quality epitaxial CoFe/Si(111) heterostructures fabricated by low-temperature molecular beam epitaxy. Appl Phys Lett 97:192501

    Article  ADS  Google Scholar 

  20. Kiziroglou ME, Li X, Zhukov AA, de Groot PAJ, de Groot CH (2008) Thermionic field emission at electrodeposited Ni-Si Schottky barriers. Solid State Electron 52:1032–1038

    Article  ADS  Google Scholar 

  21. Lin Y-C, Chen Y, Shaios A, Huang Y (2010) Detection of spin polarized carrier in silicon nanowire with single crystal MnSi as magnetic contacts. Nano Lett 10:2281–2287

    Article  ADS  Google Scholar 

  22. Uhrmann T, Dimopoulos T, Kovacs A, Kohn A, Weyers S, Paschen U, Smoliner J, Bruckl H (2009) Evaluation of Schottky and MgO-based tunnelling diodes with different ferromagnets for spin injection in n-Si. J Phys D Appl Phys 42:145114

    Article  ADS  Google Scholar 

  23. Min BC, Motohashi K, Lodder C, Jansen R (2006) Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets. Nat Mater 5:817–822

    Article  ADS  Google Scholar 

  24. Patel RS, Dash SP, de Jong MP, Janson R (2009) Magnetic tunnel contacts to silicon with low-work-function ytterbium nanolayers. J Appl Phys 106:016107

    Article  ADS  Google Scholar 

  25. Manyala N, Sidis Y, DiTusa JF, Aeppli G, Young DP, Fisk Z (2004) Large anomalous Hall effect in a silicon-based magnetic semiconductor. Nat Mater 3:255–262

    Article  ADS  Google Scholar 

  26. Zutic I, Fabian J, Erwin SC (2006) Spin injection and detection in silicon. Phys Rev Lett 97:026602

    Article  ADS  Google Scholar 

  27. Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y (1996) (Ga, Mn)as: a new diluted magnetic semiconductor based on GaAs. Appl Phys Lett 69:363–365

    Article  ADS  Google Scholar 

  28. Olejnik K, Owen MHS, Novak V, Masek J, Irvine AC, Wunderlich J, Jungwirth T (2008) Enhanced annealing, high Curie temperature, and low-voltage gating in (Ga, Mn)as: a surface oxide control study. Phys Rev B 78:054403

    Article  ADS  Google Scholar 

  29. Zhang FM, Zeng Y, Gao J, Liu XC, Wu XS, Du YW (2004) Ferromagnetism in Mn-doped silicon. J Magn Magn Mater 282:216–218

    Article  ADS  Google Scholar 

  30. Bolduc M, Awo-Affouda C, Stollenwerk A, Huang MB, Ramos FG, Agnello G, LaBella VP (2005) Above room temperature ferromagnetism in Mn-ion implanted Si. Phys Rev B 71:033302

    Article  ADS  Google Scholar 

  31. Jiang Y, Liu JF, Sun Y, Xu PS, Sun ZH, Pan ZY, Yan WS, Wei SQ (2008) Structural study of Mn x Si1−x magnetic semiconductor thin films. Acta Phys Sin 57:4322–4327

    Google Scholar 

  32. Nakayama H, Ohta H, Kulatov E (2001) Growth and properties of super-doped Si: Mn for spin-photonics. Phys B 302:419–424

    Article  ADS  Google Scholar 

  33. Bolduc M, Awo-Affouda C, Ramos FG, LaBella VP (2006) Annealing temperature effects on the structure of ferromagnetic Mn-implanted Si. J Vac Sci Technol 24:1648–1651

    Article  Google Scholar 

  34. Awo-Affouda C, Bolduc M, Huang MB, Ramos FG, Dunn KA, Theil B, Agnello G, LaBella VP (2006) Observation of crystallite formation in ferromagnetic Mn-implanted Si. J Vac Sci Technol A 24:1644–1647

    Article  Google Scholar 

  35. Zhou S, Potzger K, Zhang G, Mucklich A, Eichhorn F, Schnell N, Grotzschel R, Schmidt B, Skorupa W, Helm M, Fassbender J, Geiger D (2007) Structural and magnetic properties of Mn-implanted Si. Phys Rev B 75:085203

    Article  ADS  Google Scholar 

  36. Bak-Misiuk J, Misiuk A, Romanowski P, Barcz A, Jakiela R, Dynowska E, Domagala JZ, Caliebe W (2009) Stress-mediated redistribution of Mn in annealed Si:Mn. Mater Sci Eng B 159–160:99–102

    Article  Google Scholar 

  37. Woodbury HH, Ludwig GW (1960) Spin resonance of transition metals in silicon. Phys Rev 117:102

    Article  ADS  Google Scholar 

  38. Higgins JM, Schmitt AL, Guzei IA, Jin S (2008) Higher manganese silicide nanowires of nowotny chimney ladder phase. J Am Chem Soc 130:16086

    Article  Google Scholar 

  39. Hu J, Kurokawa T, Suemasu T, Takahara S, Itakura M, Tatsuoka H (2009) Growth of manganese silicide layers on Si substrates using MnCl(2) source. Phys Status Solidi A 206:233–237

    Article  ADS  Google Scholar 

  40. Liu HJ, Owen JHG, Miki K, Renner C (2011) Manganese silicide nanowires on Si(001). J Phys Condens Matter 23:172001

    Article  ADS  Google Scholar 

  41. Gottlieb U, Sulpice A, Lambert-Andron B, Laborde O (2003) Magnetic properties of single crystalline Mn4Si7. J Alloy Comp 361:13–18

    Article  Google Scholar 

  42. Men’shov VN, Tugushev VV, Caprara S (2010) Spin-fluctuation mediated high-temperature ferromagnetism in Si:Mn dilute magnetic semiconductors. Eur Phys J B 77:337–343

    Article  ADS  Google Scholar 

  43. Yabuuchi S, Ono Y, Nagase M, Kageshima H, Fujiwara A, Ohta E (2008) Ferromagnetism of manganese-silicide nanoparticles in silicon. Jpn J Appl Phys 47:4487

    Article  ADS  Google Scholar 

  44. Zhang ZZ, Partroens B, Chang K, Peeters FM (2008) First-principles study of transition metal impurities in Si. Phys Rev B 77:155201

    Article  ADS  Google Scholar 

  45. Chen H, Zhu WG, Kaxiras E, Zhang ZY (2009) Optimization of Mn doping in group-IV-based dilute magnetic semiconductors by electronic codopants. Phys Rev B 79:235202

    Article  ADS  Google Scholar 

  46. Zhu WG, Zhang ZY, Kaxiras E (2008) Dopant-assisted concentration enhancement of substitutional Mn in Si and Ge. Phys Rev Lett 100:027205

    Article  ADS  Google Scholar 

  47. Ye J, Jiang Y, Liu QH, Yao T, Pan ZY, Oyanagi H, Sun ZH, Yan WS, Wei SQ (2009) Cosputtered Mn-doped Si thin films studied by x-ray spectroscopy. J Appl Phys 106:103517

    Article  ADS  Google Scholar 

  48. Wu HW, Tsai CJ, Chen LJ (2007) Room temperature ferromagnetism in Mn+-implanted Si nanowires. Appl Phys Lett 90:043121

    Article  ADS  Google Scholar 

  49. Ko V, Teo KL, Liew T, Chong TC, MacKenzie M, MacLaren I, Chapman JN (2008) Origins of ferromagnetism in transition-metal doped Si. J Appl Phys 104:033912

    Article  ADS  Google Scholar 

  50. Durgun E, Akman N, Ciraci S (2008) Functionalization of silicon nanowires with transition metal atoms. Phys Rev B 78:195116

    Article  ADS  Google Scholar 

  51. Giorgi G, Cartoixa X, Sgamellotti A, Rurali R (2008) Mn-doped silicon nanowires: first-principles calculations. Phys Rev B 78:115327

    Article  ADS  Google Scholar 

  52. Durgun E, Cakir D, Aikman N, Ciraci S (2007) Half-metallic silicon nanowires: first-principles calculations. Phys Rev Lett 99:256806

    Article  ADS  Google Scholar 

  53. Xu Q, Li JB, Li SS, Xia JB (2008) The formation and electronic structures of 3d transition-metal atoms doped in silicon nanowires. J Appl Phys 104:084307

    Article  ADS  Google Scholar 

  54. Singh AK, Kumar V, Kawazoe Y (2004) Metal encapsulated nanotubes of silicon and germanium. J Mater Chem 14:555–563

    Article  Google Scholar 

  55. Wang J, Liu Y, Liu YC (2010) Magnetic silicon fullerene. Phys Chem Chem Phys 12:11428

    Article  Google Scholar 

  56. Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (eds) (1990) Binary phase diagrams, 2nd edn. ASM International, Materials Park, publisher Scott WW Jr

    Google Scholar 

  57. Takizawa H, Sato T, Endo T, Shimada M (1988) High-pressure synthesis and electrical and magnetic-properties of MnGe and CoGe with the cubic B20 structure. J Solidi Status Chem 73:40–46

    Article  ADS  Google Scholar 

  58. Park YD, Hanbicki AT, Erwin SC, Hellberg CS, Sullivan JM, Mattson JE, Ambrose TF, Wilson A, Spanos G, Joniker BT (2002) A group-IV ferromagnetic semiconductor: Mn x Ge1−x . Science 295:651–654

    Article  ADS  Google Scholar 

  59. Cho S, Choi S, Hong SC, Kim Y, Ketterson JB, Kim B-J, Kim YC, Jung J-H (2002) Ferromagnetism in Mn-doped Ge. Phys Rev B 66:033303

    Article  ADS  Google Scholar 

  60. Yamada N, Maeda K, Usami Y, Ohoyama T (1986) Magnetic-properties of intermetallic compound Mn11Ge8. J Phys Soc Jpn 55:3721–3724

    Article  ADS  Google Scholar 

  61. Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S, Tokura Y (2011) Large topological Hall effect in a short-period helimagnet MnGe. Phys Rev Lett 106:156603

    Article  ADS  Google Scholar 

  62. Tawara Y, Sato K (1963) On magnetic anisotropy of single crystal of Mn5Ge3. J Phys Soc Jpn 18:773–777

    Article  ADS  Google Scholar 

  63. Kang J-S, Kim G, Wi SC, Lee SS, Choi S, Cho S, Han SW, Kim KH, Song HJ, Shin HJ, Sekiyama A, Kasai S, Suga S, Min BI (2005) Spatial chemical inhomogeneity and local electronic structure of Mn-doped Ge ferromagnetic semiconductors. Phys Rev Lett 94:147202

    Article  ADS  Google Scholar 

  64. Li AP, Wendelken JF, Shen J, Feldman LC, Thompson JR, Weitering HH (2005) Magnetism in Mn x Ge1−x semiconductors mediated by impurity band carriers. Phys Rev B 72:195205

    Article  ADS  Google Scholar 

  65. Bougeard D, Ahlers S, Trampert A, Sircar N, Abstreiter G (2006) Clustering in a precipitate-free GeMn magnetic semiconductor. Phys Rev Lett 97:237202

    Article  ADS  Google Scholar 

  66. Guo S, Young DP, Macaluso RT, Browne DA, Henderson NL, Chan JY, Henry LL, DiTusa JF (2010) Magnetic and thermodynamic properties of cobalt-doped iron pyrite: Griffiths phase in a magnetic semiconductor. Phys Rev B 81:144423

    Article  ADS  Google Scholar 

  67. Guo S, Young DP, Macaluso RT, Browne DA, Henderson NL, Chan JY, Henry LL, DiTusa JF (2008) Discovery of the Griffiths phase in the itinerant magnetic semiconductor Fe1−x Co x S2. Phys Rev Lett 100:017209

    Article  ADS  Google Scholar 

  68. Gunnella R, Morresi L, Pinto N, Di Cicco A, Ottaviano L, Passacantando M, Verna AM, Impellizzeri G, Irrera A, d’Acapito F (2010) Localization of the dopant in Ge: Mn diluted magnetic semiconductors by x-ray absorption at the Mn K edge. J Phys Condens Matter 22:216006

    Article  ADS  Google Scholar 

  69. Tsui F, He L, Ma L, Tkachuk A, Chu YS, Nakjima K, Chikyow T (2003) Novel germanium-based magnetic semiconductors. Phys Rev Lett 91:177203

    Article  ADS  Google Scholar 

  70. Collins BA, Chu YS, He L, Zhong Y, Tsui F (2008) Dopant stability and strain states in Co and Mn-doped Ge (001) epitaxial films. Phys Rev B 77:193301

    Article  ADS  Google Scholar 

  71. Zeng C, Zhang ZY, van Benthem K, Chisholm MF, Weitering HH (2008) Optimal doping control of magnetic semiconductors via subsurfactant epitaxy. Phys Rev Lett 100:066101

    Article  ADS  Google Scholar 

  72. Jamet M, Barski A, Devillers T, Poydenot V, Dujardin R, Bayle-Guillemaud P, Rothman J, Bellet-Amalric E, Marty A, Cibert J, Mattana R, Tatarenko S (2006) High-Curie-temperature ferromagnetism in self-organized Ge1−x Mn x nanocolumns. Nat Mater 5:653–659

    Article  ADS  Google Scholar 

  73. Bougeard D, Sircar N, Ahlers S, Lang V, Abstreiter G, Trampert A, LeBeau JM, Stemmer S, Saxey DW, Cerezo A (2009) Ge1−x Mn x clusters: central structural and magnetic building blocks of nanoscale wire-like self-assembly in a magnetic semiconductor. Nano Lett 9:3743–3748

    Article  Google Scholar 

  74. Jain A, Jamet M, Barski A, Devillers T, Porret C, Bayle-Guillemaud P, Gambarelli S, Maurel V, Desfonds G (2010) Investigation of magnetic anisotropy of (Ge, Mn) nanocolumns. Appl Phys Lett 97:202502

    Article  ADS  Google Scholar 

  75. Wang KL, Zhao Z, Khitun A (2008) Spintronics for nanoelectronics and nanosystems. Thin Solid Films 517:184–190

    Article  ADS  Google Scholar 

  76. Majumdar S, Das AK, Ray SK (2009) Magnetic semiconducting diode of p-Ge1−x Mn x /n-Ge layers on silicon substrate. Appl Phys Lett 94:122505

    Article  ADS  Google Scholar 

  77. Bokacheva L, Teizer W, Hellman F, Dynes RC (2004) Variation of the density of states in amorphous GdSi at the metal-insulator transition. Phys Rev B 69:235111

    Article  ADS  Google Scholar 

  78. Teizer W, Hellman F, Dynes RC (2000) Magnetic field induced insulator to metal transition in amorphous-Gd x Si1−x . Solid State Commun 114:81

    Article  ADS  Google Scholar 

  79. Zeng L, Cao JX, Helgren E, Karel J, Arenholz E, Ouyang L, Smith DJ, Wu RQ, Hellman F (2010) Distinct local electronic structure and magnetism for Mn in amorphous Si and Ge. Phys Rev B 82:165202

    Article  ADS  Google Scholar 

  80. Soo YL, Yao JH, Wang CS, Chang SL, Hsieh CA, Lee JF, Chin TS (2010) Local structures and concentration dependence of magnetic properties in Cr- and Mn-doped amorphous silicon ferromagnetic thin films. Phys Rev B 81:104104

    Article  ADS  Google Scholar 

  81. Qin Y-F, Yan S-S, Kang S-S, Xiao S-Q, Zhang Q, Yao X-X, Xu T-S, Tian Y-F, Dai Y-Y, Liu G-L, Chen Y-X, Mei L-M, Ji G, Zhang Z (2011) Homogeneous amorphous Fe x Ge1−x magnetic semiconductor films with high Curie temperature and high magnetization. Phys Rev B 83:235214

    Article  ADS  Google Scholar 

  82. Ottaviano L, Continenza A, Profeta G, Impellizzeri G, Irrera A, Gunnella R, Kazakova O (2011) Room-temperature ferromagnetism in Mn-implanted amorphous Ge. Phys Rev B 83:134426

    Article  ADS  Google Scholar 

  83. See Bibliography of Magnetic Materials and Tabulation of Magnetic Transition Temperatures Compiled by Connolly TF, Copenhaver ED (1970) Solid state literature guides. vol 5 Oak Ridge National Laboratories Literature Guides. Plenum, New York

    Google Scholar 

  84. Wurmehl S, Fecher GH, Kandpal HC, Ksenofonov V, Felser C, Lin HJ (2006) Investigation of Co2FeSi: the Heusler compound with highest Curie temperature and magnetic moment. Appl Phys Lett 88:032503

    Article  ADS  Google Scholar 

  85. Cable JW, Wakabayashi N, Radhakrishna P (1993) Magnetic excitations in the triangular antiferromagnets Mn3Sn and Mn3Ge. Phys Rev B 48:6159–6166

    Article  ADS  Google Scholar 

  86. Takizawa H, Yamashita T, Uheda K, Endo T (2002) High-pressure synthesis of ferromagnetic Mn3Ge with the Cu3Au-type structure. J Phys Condens Matter 14:11147–11150

    Article  ADS  Google Scholar 

  87. Hamaya K, Ueda K, Kishi Y, Ando Y, Sadoh T, Miyao M (2008) Epitaxial ferromagnetic Fe3Si/Si(111) structures with high-quality heterointerfaces. Appl Phys Lett 93:132117

    Article  ADS  Google Scholar 

  88. Ueda K, Hamaya K, Yamamoto K, Ando Y, Sadoh T, Maeda Y, Miyao M (2008) Low-temperature molecular beam epitaxy of a ferromagnetic full-Heusler alloy Fe2MnSi on Ge(111). Appl Phys Lett 93:112108

    Article  ADS  Google Scholar 

  89. Hamaya K, Itoh H, Nakatsuka O, Ueda K, Yamamoto K, Itakura M, Taniyama T, Ono T, Miyao M (2009) Ferromagnetism and electronic structures of nonstoichiometric Heusler-Alloy Fe3−x Mn x Si epilayers grown on Ge(111). Phys Rev Lett 102:137204

    Article  ADS  Google Scholar 

  90. Yamada S, Hamaya K, Yamamoto K, Murakami T, Mibu K, Miyao M (2010) Significant growth-temperature dependence of ferromagnetic properties for Co2FeSi/Si(111) prepared by low-temperature molecular beam epitaxy. Appl Phys Lett 96:082511

    Article  ADS  Google Scholar 

  91. Kasahara K, Yamamoto K, Yamada S, Murakami T, Hamaya K, Mibu K, Miyao M (2010) Highly ordered Co2FeSi Heusler alloys grown on Ge(111) by low-temperature molecular beam epitaxy. J Appl Phys 107:09B105

    Article  Google Scholar 

  92. Anumpam JPC, Rout PK, Hossain Z, Budhani RC (2010) Charge transport and magnetic ordering in laser ablated Co2FeSi thin films epitaxially grown on (100) SrTiO3. J Phys D Appl Phys 43:255002

    Article  ADS  Google Scholar 

  93. Wang WH, Przybylski M, Kuch W, Chelaru LI, Wang J, Lu YF, Barthel J, Meyerheim HL, Kirschner J (2005) Magnetic properties and spin polarization of Co2MnSi Heusler alloy thin films epitaxially grown on GaAs(001). Phys Rev B 71:144416

    Article  ADS  Google Scholar 

  94. Gercsi Z, Rajanikanth A, Takahashi YK, Hono K, Kikuchi M, Tezuka N, Inomata K (2006) Spin polarization of Co2FeSi full-Heusler alloy and tunneling magnetoresistance of its magnetic tunneling junctions. Appl Phys Lett 89:082512

    Article  ADS  Google Scholar 

  95. Ando Y, Hamaya K, Kasahara K, Kishi Y, Ueda K, Sawano K, Sadoh T, Miyao M (2009) Electrical injection and detection of spin-polarized electrons in silicon through an Fe3Si/Si Schottky tunnel barrier. Appl Phys Lett 94:182105

    Article  ADS  Google Scholar 

  96. Candini A, Moze O, Kockelmann W, Cadogan JM, Bruck E, Tegus O (2004) Revised magnetic phase diagram for Fe x Mn5−x Si3 intermetallics. J Appl Phys 95:6819–6821

    Article  ADS  Google Scholar 

  97. Zeng C, Erwin SC, Feldman LC, Li AP, Jin R, Song Y, Thompson JR, Weitering HH (2003) Epitaxial ferromagnetic Mn5Ge3 on Ge(111). Appl Phys Lett 83:5002–5004

    Article  ADS  Google Scholar 

  98. Austin AE (1969) Magnetic properties of Fe3Ge5-Mn5Ge3 solid solutions. J Appl Phys 40:1381–1382

    Article  ADS  Google Scholar 

  99. Wernick JH, Wertheim GK, Sherwood SK (1972) Magnetic behavior of monosilicides of 3D-transition elements. Mater Res Bull 7:1431–1441

    Article  Google Scholar 

  100. Manyala N, Sidis Y, DiTusa JF, Aeppli G, Young DP, Fisk Z (2000) Magnetoresistance from quantum interference effects in ferromagnets. Nature 404:581–584

    Article  ADS  Google Scholar 

  101. Manyala N, DiTusa JF, Aeppli G, Ramirez AP (2008) Doping a semiconductor to create an unconventional metal. Nature 454:976–980

    Article  ADS  Google Scholar 

  102. DiTusa JF, Friemelt K, Bucher E, Aeppli G, Ramirez AP (1997) Metal-insulator transitions in the Kondo insulator FeSi and classic semiconductors are similar. Phys Rev Lett 78:2831–2834

    Article  ADS  Google Scholar 

  103. DiTusa JF, Friemelt K, Bucher E, Aeppli G, Ramirez AP (1998) Heavy fermion metal Kondo insulator transition in FeSi1−x Al x . Phys Rev B 58:10288–10301

    Article  ADS  Google Scholar 

  104. Ishikawa Y, Tajima K, Bloch D, Roth M (1976) Helical spin structure in manganese silicide MnSi. Solid State Commun 19:525

    Article  ADS  Google Scholar 

  105. Ishikawa Y, Shirane G, Tarvin JA, Kohgi M (1977) Magnetic excitations in weak itinerant ferromagnet MnSi. Phys Rev B 16:4956–4970

    Article  ADS  Google Scholar 

  106. Pecheur P, Toussaint G, Kenzari H, Malaman B, Welter R (1997) Ferromagnetism of the chimney-ladder compound Cr11Ge19. J Alloy Comp 262:363–365

    Article  Google Scholar 

  107. Lange H (1997) Electronic properties of semiconducting silicides. Phys Status Solidi (b) 201, 3–65 and references therein

    Google Scholar 

  108. Hohl H, Ramirez AP, Goldmann C, Ernst G, Bucher E (1998) Transport properties of RuSi, RuGe, OsSi, and quasi-binary alloys of these compounds. J Alloy Comp 278:39–43

    Article  Google Scholar 

  109. See Madelung O (ed) (1996) Semiconductors-basic data, 2nd rev edn. Springer, Berlin

    Google Scholar 

  110. Lee M, Onose Y, Tokura Y, Ong NP (2007) Hidden constant in the anomalous Hall effect of high-purity magnet MnSi. Phys Rev B 75:172403

    Article  ADS  Google Scholar 

  111. Lee M, Kang W, Onose Y, Tokura Y, Ong NP (2009) Unusual Hall effect anomaly in MnSi under pressure. Phys Rev Lett 102:186601

    Article  ADS  Google Scholar 

  112. Neubauer A, Pfleiderer C, Ritz R, Niklowitz PG, Boni P (2009) Hall effect and magnetoresistance in MnSi. Phys B 404:3163–3166

    Article  ADS  Google Scholar 

  113. Moriya T (1985) In: Fulde P (ed) Spin fluctuations in itinerant electron magnetism. Springer, Berlin

    Google Scholar 

  114. Pfleiderer C, Julian SR, Lonzarich GG (2001) Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets. Nature 414:427–430

    Article  ADS  Google Scholar 

  115. Pfleiderer C, Reznik D, Pintschovius L, von Lohneysen H, Garst M, Rosch A (2004) Partial order in the non-Fermi-liquid phase of MnSi. Nature 427:227–231

    Article  ADS  Google Scholar 

  116. Binz B, Vishwanath A, Aji V (2006) Theory of the helical spin crystal: a candidate for the partially ordered state of MnSi. Phys Rev Lett 96:207202

    Article  ADS  Google Scholar 

  117. Roβler UK, Bogdanov AN, Pfleiderer C (2006) Spontaneous skyrmion ground states in magnetic metals. Nature 442:707

    Google Scholar 

  118. Tewari S, Belitz D, Kirkpatrick TR (2006) Blue quantum fog: chiral condensation in quantum helimagnets. Phys Rev Lett 96:047207

    Article  ADS  Google Scholar 

  119. Fischer I, Shah N, Rosch A (2008) Crystalline phases in chiral ferromagnets: destabilization of helical order. Phys Rev B 77:024415

    Article  ADS  Google Scholar 

  120. Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georg R, Boni P (2009) Skyrmion lattice in a chiral magnet. Science 323:915–919

    Article  ADS  Google Scholar 

  121. Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, Nagaosa N, Tokura Y (2010) Real-space observation of a two-dimensional skyrmion crystal. Nature 465:901–904

    Article  ADS  Google Scholar 

  122. Yu XZ, Kanazawa N, Onose Y, Kimoto K, Zhang WZ, Ishiwata S, Matsui Y, Tokura Y (2011) Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat Mater 10:106–109

    Article  ADS  Google Scholar 

  123. Jonietz F, Muhlbauer S, Pfleiderer C, Neubauer A, Muenzer W, Bauer A, Adams T, Georgii R, Boni P, Duine RA, Everschor K, Garst M, Rosch A (2010) Spin transfer torques in MnSi at ultralow current densities. Science 330:1648–1651

    Article  ADS  Google Scholar 

  124. Sato T, Sakata M (1983) Magnetic and electrical-properties of CrGe and Cr11Ge8. J Phys Soc Jpn 52:1807–1813

    Article  ADS  Google Scholar 

  125. Richardson M (1967) Partial equilibrium diagram of Fe-Ge system in range 40–72 at. percent Ge and crystallization of some iron germanides by chemical transport reactions. Acta Chem Scand 21:2305–2317

    Article  Google Scholar 

  126. Lebech B, Bernhard J, Freltoft T (1989) Magnetic-structures of cubic FeGe studied by small-angle neutron-scattering. J Phys Condens Matter 1:6105

    Article  ADS  Google Scholar 

  127. Lundgren L, Beckman O, Attia V, Battacherjee SP, Richardson M (1970) Helical spin arrangement in cubic FeGe. Phys Scr 1:69–72

    Article  ADS  Google Scholar 

  128. Yeo S, Nakatsuji S, Bianchi AD, Schlottmann P, Fisk Z, Balicas L, Stampe PA, Kennedy RJ (2003) First-order transition from a Kondo insulator to a ferromagnetic metal in single crystalline FeSi1−x Ge x . Phys Rev Lett 91:046401

    Article  ADS  Google Scholar 

  129. Capan C et al To be published

    Google Scholar 

  130. Murarka SP (1980) Refractory silicides for integrated-circuits. J Vac Sci Technol 17:775–792

    Article  ADS  Google Scholar 

  131. Murarka SP (1983) Transition-metal silicides. Annu Rev Mater Sci 13:117–137

    Article  ADS  Google Scholar 

  132. Murarka SP (1995) Silicide thin-films and theor applications in microelectronics. Intermetallics 3:173–186

    Article  Google Scholar 

  133. Reader AH, van Ommen AH, Weijs PJW, Wolters RAM, Oostra DJ (1993) Transition-metal silicides in silicon technology. Rep Prog Phys 56:1397–1467

    Article  ADS  Google Scholar 

  134. Derrien J, Chevrier J, Le Thanh V, Crumbaker TE, Natoli JY, Berbezier I (1993) Silicide epilayers – recent developments and prospects for a Si-compatible technology. Appl Surf Sci 70(71):546–558

    Article  ADS  Google Scholar 

  135. Chevrier J, Vinh LT, Derrien J (1993) Strained and relaxed semiconducting silicide layers heteroepitaxially grown on silicon. Scanning Microsc 7:473–480

    Google Scholar 

  136. von Kanel H, Mader KA, Muller E, Onda N, Sirringhaus S (1992) Structural and electronic-properties of metastable epitaxial FeSi1+x films on Si(111). Phys Rev B 45:R13807–R13810

    Article  ADS  Google Scholar 

  137. von Kanel H, Mendik M, Mader KA, Muller E, Onda N, Goncalves-Conto S, Schwartz C, Malegori G, Miglio L, Marabelli F (1994) Elastic and vibrational properties of pseudomorphic FeSi films. Phys Rev B 50:3570–3576

    Article  ADS  Google Scholar 

  138. Kafader U, Wetzel P, Pirri C, Gewinner G (1993) X-ray photoemission characterization of thin epitaxial Fe silicide phases on Si(111). Appl Phys Lett 63:2360–2362

    Article  ADS  Google Scholar 

  139. Koga T, Bright A, Suzuki T, Shimada K, Tatsuoka H, Kuwara H (2000) Growth of β-FeSi2 and FeSi layers by reactive deposition using Sb-related intermetallic compounds. Thin Solid Films 369:248–252

    Article  ADS  Google Scholar 

  140. Matsuda K, Tatsuoka H, Matsunaga K, Isaji K, Kuwabara H, Brown PD, Xin Y, Dunn-Borkowski R, Humphreys CJ (1998) High-quality epitaxial MnSi(111) layers grown in the presence of an Sb flux. Jpn J Appl Phys 37:6556–6561

    Article  ADS  Google Scholar 

  141. Matsuda K, Takano Y, Kuwabara K, Tatsuoka H, Kuwabara H, Suzuki Y, Fukuda Y, Hashimoto S, Yan Y, Pennycook SJ (2002) Formation of MnSb during the growth of MnSi layers in the presence of an Sb flux. J Appl Phys 91:4932–4935

    Article  ADS  Google Scholar 

  142. Karhu E, Kahwaji S, Monchesky TL, Parsons C, Robertson MD, Maunders C (2010) Structure and magnetic properties of MnSi epitaxial thin films. Phys Rev B 82:184417

    Article  ADS  Google Scholar 

  143. Karhu E, Kahwaji S, Robertson MD, Fritzche H, Kirby BJ, Majkrzak CF, Monchesky TL (2011) Helical magnetic order in MnSi thin films. Phys Rev B 84:060404(R)

    Article  ADS  Google Scholar 

  144. Hortamani M, Sratskii L, Kratzer P, Mertig I (2009) Searching for Si-based spintronics by first principles calculations. New J Phys 11:125009

    Article  Google Scholar 

  145. Hortamani M, Kratzer P, Scheffler M (2007) Density-functional study of Mn monosilicide on the Si(111) surface: film formation versus island nucleation. Phys Rev B 76:235426

    Article  ADS  Google Scholar 

  146. Higashi S, Kocan P, Tochihara H (2009) Reactive epitaxial growth of MnSi ultrathin films on Si(111) by Mn deposition. Phys Rev B 79:205312

    Article  ADS  Google Scholar 

  147. Higashi S, Ikedo Y, Kocan P, Tochihara H (2008) Epitaxially grown flat MnSi ultrathin film on Si(111). Appl Phys Lett 93:013104

    Article  ADS  Google Scholar 

  148. Magnano E, Bondino F, Cepek C, Parmigiani F, Mozzati MC (2010) Ferromagnetic and ordered MnSi(111) epitaxial layers. Appl Phys Lett 96:152502

    Article  ADS  Google Scholar 

  149. Magnano E, Carleschi E, Nicolaou A, Pardini T, Zagrando M, Parmigiani F (2006) Growth of manganese silicide films by co-deposition of Mn and Si on Si(111): a spectroscopic and morphological investigation. Surf Sci 600:3932–3937

    Article  ADS  Google Scholar 

  150. Suto H, Imai K, Fujii S, Honda S, Katayama M (2009) Growth process and surface structure of MnSi on Si(111). Surf Sci 603:226–231

    Article  ADS  Google Scholar 

  151. Schwinge K, Paggel JJ, Fumagalli P (2007) Mosaic superstructure in manganese silicide films on Si(111)-(√3×√3): Bi-alpha. Surf Sci 601:810–813

    Article  ADS  Google Scholar 

  152. Schwinge K, Muller C, Mogilatenko A, Paggel JJ, Fumagalli P (2005) Structure and magneto-optic Kerr measurements of epitaxial MnSi films on Si(111). J Appl Phys 97:103913

    Article  ADS  Google Scholar 

  153. Manyala N, Ngom BD, Beye AC, Bucher R, Maaza M, Strydom A, Forbes A, Johnson ATC, DiTusa JF (2009) Structural and magnetic properties of ε-Fe1−x Co x Si thin films deposited via pulsed laser deposition. Appl Phys Lett 94:232503

    Article  ADS  Google Scholar 

  154. Kulkarni JS, Kazakova O, Holmes JD (2006) Dilute magnetic semiconductor nanowires. Appl Phys A 85:277–286

    Article  ADS  Google Scholar 

  155. Kazakova O, Kulkarni JS, Arnold DC, Holmes JD (2007) Engineering the magnetic properties of Ge1−x Mn x nanowires. J Appl Phys 101:09H108

    Article  Google Scholar 

  156. Kazakova O, Kulkarni JS, Holmes JD, Demokritov SO (2005) Room-temperature ferromagnetism in Ge1−x Mn x nanowires. Phys Rev B 72:094415

    Article  ADS  Google Scholar 

  157. Kazakova O, van Meulen MI, Petkov N, Holmes JD (2009) Magnetic properties of single crystalline Ge1−x Mn x nanowires. IEEE Trans Magn 45:4085–4088

    Article  ADS  Google Scholar 

  158. Morgunov RB, Dmitriev AI, Tanimoto Y, Kazakova O (2009) Electron spin resonance of charge carriers and antiferromagnetic clusters in Ge0.99Cr0.01 nanowires. J Appl Phys 105:093922

    Article  ADS  Google Scholar 

  159. Katkar AS, Chu Y-C, Chu L-W, Chen L-J (2011) Chromium-Doped Germanium Nanotowers: Growth Mechanism and Room Temperature Ferromagnetism. Cryst Growth Des 11:2957–2963

    Article  Google Scholar 

  160. Schmitt AL, Bierman MJ, Schmeisser D, Himpsel FJ, Jin S (2006) Synthesis and properties of single-crystal FeSi nanowires. Nano Lett 6:1617–1621

    Article  ADS  Google Scholar 

  161. Liang S, Fang X, Xia TL, Qing YJ, Guo ZX (2010) Self-assembled magnetic nanohead-FeSi nanowire epitaxial heterojunctions by chemical vapor deposition. J Phys Chem C 114:16187–16190

    Article  Google Scholar 

  162. Schmitt AL, Zhu L, Schmeisser D, Hempsel FJ, Jin S (2006) Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor. J Phys Chem B 110:18142–18146

    Article  Google Scholar 

  163. Seo K, Varadwaj KSK, Mohanty P, Lee S, Jo Y, Hung MH, Kim J, Kim B (2007) Magnetic properties of single-crystalline CoSi nanowires. Nano Lett 7:1240–1245

    Article  ADS  Google Scholar 

  164. Schmitt AL, Higgins JM, Jin S (2008) Chemical synthesis and magnetotransport of magnetic semiconducting Fe1−x Co x Si alloy nanowires. Nano Lett 8:810–815

    Article  ADS  Google Scholar 

  165. In J, Varadwaj KSK, Seo K, Lee S, Jo Y, Jung MH, Kim J, Kim B (2008) Single-crystalline ferromagnetic Fe1−x Co x Si nanowires. J Phys Chem C 112:4748–4752

    Article  Google Scholar 

  166. Higgins JM, Ding RH, DeGrave JP, Jin S (2010) Signature of helimagnetic ordering in single-crystal MnSi nanowires. Nano Lett 10:1605–1610

    Article  ADS  Google Scholar 

  167. Seo K, Yoon H, Ryu S-W, Lee S, Jo Y, Jung M-H, Kim J, Choi Y-K, Kim B (2010) Itinerant helimagnetic single-crystalline MnSi nanowires. ACS Nano 4:2569–2576

    Article  Google Scholar 

  168. Schmitt AL, Higgins JM, Szczech JR, Jin S (2010) Synthesis and applications of metal silicide nanowires. J Mater Chem 20:223–235

    Article  Google Scholar 

  169. Song YP, Schmitt AL, Jin S (2007) Ultralong single-crystal metallic Ni2Si nanowires with low resistivity. Nano Lett 7:965–969

    Article  ADS  Google Scholar 

  170. Higgins JM, Carmichael P, Schmitt AL, Lee S, Degrave JP, Jin S (2011) Mechanistic investigation of the growth of Fe1−x Co x Si (0≤x≤1) and Fe5(Si1−y Ge y )3 (0≤y≤0.33) ternary alloy nanowires. ACS Nano 5:3268–3277

    Article  Google Scholar 

  171. Higgins JM, Ding RH, Jin S (2011) Synthesis and characterization of manganese-rich silicide α-Mn5Si3, β-Mn5Si3, and β -Mn3Si nanowires. Chem Mater 23:3848–3853

    Article  Google Scholar 

  172. Szczech JR, Schmitt AL, Bierman MJ, Jin S (2007) Single-crystal semiconducting chromium disilicide nanowires synthesized via chemical vapor transport. Chem Mater 19:3238–3243

    Article  Google Scholar 

  173. Seo K, Varadwaj KSK, Cha D, In J, Kim J, Park J, Kim B (2007) Synthesis and electrical properties of single crystalline CrSi2 nanowires. J Phys Chem C 111:9072–9076

    Article  Google Scholar 

  174. DeGrave JP, Schmitt AL, Selinsky RS, Higgins JM, Keavney DJ, Jin S (2011) Spin polarization measurement of homogeneously doped Fe1−x Co x Si nanowires by Andreev reflection spectroscopy. Nano Lett 11:4431–4437

    Article  ADS  Google Scholar 

  175. Hung S-W, Wang TT-J, Chu L-W, Chen L-J (2011) Orientation-dependent room-temperature ferromagnetism of FeSi nanowires and applications in nonvolatile memory devices. J Phys Chem C 115:15592–15597

    Article  Google Scholar 

  176. Liu H, She GW, Ling ST, Mu LX, Shi WS (2011) Ferromagnetic Si/Mn27Si47 core/shell nanowire arrays. J Appl Phys 109:044305

    Article  ADS  Google Scholar 

  177. Zeng CG, Kent PRC, Varela M, Eisenbach M, Stocks GM, Torija M, Shen J, Weitering HH (2006) Epitaxial stabilization of ferromagnetism in the nanophase of FeGe. Phys Rev Lett 96:127201

    Article  ADS  Google Scholar 

  178. Yan CY, Higgins JM, Faber MS, Lee PS, Jin S (2011) Spontaneous growth and phase transformation of highly conductive nickel germanide nanowires. ACS Nano 5:5006–5014

    Article  Google Scholar 

  179. Theodoropoulou N, Hebard AF, Chu SNG, Overberg ME, Abernathy CR, Pearton SJ, Wilson RG, Zavada JM, Park YD (2002) Magnetic and structural properties of Fe, Ni, and Mn-implanted SiC. J Vac Sci Technol A 20:579–582

    Article  ADS  Google Scholar 

  180. Stromberg F, Keune W, Chen X, Bedanta S, Reuther H, Muncklich A (2006) The origin of ferromagnetism in Fe-57 ion-implanted semiconducting 6H-polytype silicon carbide. J Phys Condens Mater 18:9881–9900

    Article  ADS  Google Scholar 

  181. Song B, Bao HQ, Li H, Lei M, Peng TH, Jian JK, Liu J, Wang WY, Wang WJ, Chen XL (2009) Observation of glassy ferromagnetism in Al-doped 4H-SiC. J Am Chem Soc 131:1376–1377

    Article  Google Scholar 

  182. Ma SB, Sun YP, Zhao BC, Tong P, Zhu XB, Song WH (2007) Magnetic properties of Mn-doped cubic silicon carbide. Phys B 394:122–126

    Article  ADS  Google Scholar 

  183. Song B, Bao HQ, Li H, Lei M, Jian JK, Han JC, Zhang XH, Meng SH, Wang WY, Chen XL (2009) Magnetic properties of Mn-doped 6H-SiC. Appl Phys Lett 94:102508

    Article  ADS  Google Scholar 

  184. Song B, Chen XL, Han JC, Wang G, Bao HQ, Duan LB, Zhu KX, Li H, Zhang ZH, Wang WY, Zhang XH, Meng SH (2011) Raman scattering and magnetizations studies of (Al, Cr)-codoped 4H-SiC. J Magn Magn Matter 323:2876–2882

    Article  ADS  Google Scholar 

  185. Seong HK, Park TE, Lee SC, Lee KR, Park JK, Choi HJ (2009) Magnetic properties of vanadium-doped silicon carbide nanowires. Met Mater Int 15:107–111

    Article  Google Scholar 

  186. Shaposhnikov VL, Sobolev NA (2004) The electronic structure and magnetic properties of transition metal-doped silicon carbide. J Phys Condens Matter 16:1761–1768

    Article  ADS  Google Scholar 

  187. Los A, Los V (2010) Room temperature ferromagnetism in Mn-doped silicon carbide from first-principles calculations. J Phys Condens Matter 22:245801

    Article  ADS  Google Scholar 

Further Reading

  • Bader SD (2006) Colloquium: opportunities in nanomagnetism. Rev Mod Phys 78:1–15

    Article  ADS  Google Scholar 

  • Choi HJ, Seong HK, Kim U (2008) Diluted magnetic semiconductor nanowires. Nano 3:1–19

    Article  Google Scholar 

  • Dietl T, Ohno H (2006) Engineering magnetism in semiconductors. Matter Today 9:18–26

    Article  Google Scholar 

  • Fabian J, Matos-Abiague A, Ertler C, Stano P, Zutic I (2007) Semiconductor spintronics. Acta Phys Slov 57:565–907

    ADS  Google Scholar 

  • Hanson R, Awschalom DD (2008) Coherent manipulation of single spins in semiconductors. Nature 453:7198

    Article  Google Scholar 

  • Krishnan KM, Pakhomov AB, Bao Y, Blomqvist P, Chun Y, Gonzales M, Griffin K, Ji X, Roberts BKN (2006) Nanomagnetism and spin electronics: materials, microstructure and novel properties. J Matter Sci 41:793–815

    Article  ADS  Google Scholar 

  • Maekawa S (ed) (2006) Concepts in spin electronics. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Macdonald AH, Schiffer P, Samarth N (2005) Ferromagnetic semiconductors: moving beyond (Ga, Mn)As. Nat Mater 4:195–202

    Article  ADS  Google Scholar 

  • Schliemann J (2006) Spin hall effect. Int J Mod Phys B 20:1015–1036

    Article  ADS  MATH  Google Scholar 

  • Valenzuela SO (2009) Nonlocal electronic spin detection, spin accumulation and the spin hall effect. Int J Mod Phys 23:2413–2438

    Article  ADS  Google Scholar 

  • Von Molnar S, Read D (2002) Magneto-transport in magnetic compound semiconductors and metals. J Magn Magn Mater 242:13–20

    Article  ADS  Google Scholar 

  • Von Molnar S, Read D (2003) New materials for semiconductor spin-electronics. Proc IEEE 91:715–726

    Article  Google Scholar 

  • Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495

    Article  ADS  Google Scholar 

  • Wu H, Kratzer P, Scheffler M (2007) Density-functional theory study of half-metallic heterostructures: interstitial Mn in Si. Phys Rev Lett 98:117202

    Google Scholar 

  • Wu MW, Jiang JH, Weng MQ (2010) Spin dynamics in semiconductors. Phys Rep Rev Sec Phys Lett 493:61–236

    MathSciNet  Google Scholar 

  • Zutic I, Dery H (2011) Spintronics: taming spin currents. Nat Mater 10:646–647

    Article  ADS  Google Scholar 

  • Zutic I, Fabian J, Das Sarma S (2004) Spintronics: fundamentals and applications. Re Mod Phys 76:323–410

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. DiTusa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

DiTusa, J.F. (2016). Si Based Magnetic Semiconductors. In: Xu, Y., Awschalom, D., Nitta, J. (eds) Handbook of Spintronics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6892-5_21

Download citation

Publish with us

Policies and ethics