Skip to main content

Bone Markers in Rett Syndrome

  • Reference work entry
  • First Online:
Biomarkers in Bone Disease

Abstract

Rett syndrome (RTT) is a severe neurodevelopmental disease affecting primarily girls because of a mutation of the gene methyl-CPG-binding protein 2, MECP2, located at the X chromosome. The hallmarks of RTT are global developmental delay, regression of mile stones as partial or complete loss of purposeful hand skills and acquired spoken language/babbling, gait abnormalities, and stereotypic hand movements. Girls with RTT are often growth retarded, have low bone mass, and increased occurrence of low-energy fractures. Recent studies of biochemical bone markers, e.g., osteocalcin, bone-specific alkaline phosphatase, N-terminal propeptides of collagen type 1, and C-terminal telopeptide (crosslinks), have shown reduced bone formation in the context of reduced/normal bone resorption in RTT patients compared to sex-, age-, and pubertal-matched healthy controls. This deviation of growth and bone formation is apparent from early age but without association to low bone mass or low-energy fractures. As for healthy children, patients with RTT have higher levels of bone markers in early childhood and prepubertal years followed by an overall decrease through puberty and by age. It is unknown whether there is a slight increase in biochemical bone markers during early-mid puberty. Patients with RTT do not have skewed levels of sex hormones, growth hormones, or thyroid hormones. Vitamin D levels are often in the range of insufficiency. No association to specific MECP2 mutations has been reported, but it is possible that MECP2 exerts a general influence on growth and bone formation. However, the specific relation to the osteoblast function and activity and the interplay with the osteoclasts remain to be elucidated. In support of a low bone turnover, phenotype in RTT is the result from a histomorphometric study of bone biopsies in RTT showing reduced bone volume and low bone formation rate. Studies of MECP2 null mice also report abnormal bone development with reduced osteoblast number, osteoblast dysmorphology, growth plate abnormalities, reduced bone volume, and reduced bone strength. As this deviation of bone development is potentially reversible in MECP2 null mice, it is important to continue research of bone metabolism in order to optimize possibilities of prevention and treatment of bone pathology in RTT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

B-ALP:

Bone-specific alkaline phosphatase

CTX:

C-terminal telopeptide crosslinks

DNA:

Deoxyribonucleic acid

DXA:

Dual energy X-ray absorptiometry

GH:

Growth hormone

MECP2 :

The gene methyl-CPG-binding protein 2

MeCP2:

The protein methyl-CPG-binding protein 2

OC:

Osteocalcin

P1CP:

Type 1 procollagen carboxyterminal propeptide

P1NP:

N-terminal propeptides of collagen type 1

PTH:

Parathyroid hormone

RNA:

Ribonucleic acid

RTT:

Rett syndrome

TSH T3 and T4:

Thyroid hormones

Vitamin D:

25-Hydroxy vitamin D2 and D3

References

  • Amir RE, Van den Veyver IB, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23(2):185–8.

    Article  CAS  PubMed  Google Scholar 

  • Amir RE, Van den Veyver IB, Schultz R, et al. Influence of mutation type and X chromosome inactivation on Rett syndrome phenotypes. Ann Neurol. 2000;47(5):670–9.

    Article  CAS  PubMed  Google Scholar 

  • Anderson A, Wong K, Jacoby P, et al. Twenty years of surveillance in Rett syndrome: what does this tell us? Orphanet J Rare Dis. 2014;9(1):87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Armstrong DD, Dunn JK, Schultz RJ, et al. Organ growth in Rett syndrome: a postmortem examination analysis. Pediatr Neurol. 1999;20(2):125–9.

    Article  CAS  PubMed  Google Scholar 

  • Blue ME, Boskey AL, Doty SB, et al. Osteoblast function and bone histomorphometry in a murine model of Rett syndrome. Bone. 2015;76:23–30.

    Article  PubMed  Google Scholar 

  • Brandt J, et al. The N- and C-erminal propeptides of human procollagen type 1 (P1NP and P1CP): molecular heterogeneity and assay technology. In: Eastell R et al., editors. Bone markers: biochemical and clinical perspectives. 1st ed. London: Martin Dunitz; 2001. p. 73–81.

    Google Scholar 

  • Budden SS, Gunness ME. Possible mechanisms of osteopenia in Rett syndrome: bone histomorphometric studies. J Child Neurol. 2003;18(10):698–702.

    Article  PubMed  Google Scholar 

  • Cepollaro C, Gonnelli S, Bruni D, et al. Dual X-ray absorptiometry and bone ultrasonography in patients with Rett syndrome. Calcif Tissue Int. 2001;69(5):259–62.

    Article  CAS  PubMed  Google Scholar 

  • Chahrour M, Zoghbi HY. The story of Rett syndrome: from clinic to neurobiology. Neuron. 2007;56(3):422–37.

    Article  CAS  PubMed  Google Scholar 

  • Chen C-L, Ke J-Y, Wang C-J, et al. Factors associated with bone density in different skeletal regions in children with cerebral palsy of various motor severities. Dev Med Child Neurol. 2011;53(2):131–6.

    Article  PubMed  Google Scholar 

  • Demers LM. Bone-specific alkaline phosphatase. In: Eastell R et al., editors. Bone markers: biochemical and clinical perspectives. 1st ed. London: Martin Dunitz; 2001. p. 57–63.

    Google Scholar 

  • Downs J, Bebbington A, Woodhead H, et al. Early determinants of fractures in Rett syndrome. Pediatrics. 2008;121(3):540–6.

    Article  PubMed  Google Scholar 

  • Eastell R. Role of oestrogen in the regulation of bone turnover at the menarche. J Endocrinol. 2005;185(2):223–34.

    Article  CAS  PubMed  Google Scholar 

  • Gadalla KKE, Bailey MES, Spike RC, et al. Improved survival and reduced phenotypic severity following AAV9/MECP2 gene transfer to neonatal and juvenile male Mecp2 knockout mice. Mol Ther. 2013;21(1):18–30.

    Article  CAS  PubMed  Google Scholar 

  • Garg SK, Lioy DT, Cheval H, et al. Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. J Neurosci. 2013;33(34):13612–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonnelli S, Caffarelli C, Hayek J, et al. Bone ultrasonography at phalanxes in patients with Rett syndrome: a 3-year longitudinal study. Bone. 2008;42(4):737–42.

    Article  CAS  PubMed  Google Scholar 

  • Gundberg CM. Osteocalcin. In: Eastell R et al., editors. Bone markers: biochemical and clinical perspectives. 1st ed. London: Martin Dunitz; 2001. p. 65–72.

    Google Scholar 

  • Haas RH, Dixon SD, Sartoris DJ, et al. Osteopenia in Rett syndrome. J Pediatr. 1997;131(5):771–4.

    Article  CAS  PubMed  Google Scholar 

  • Hagberg B. Clinical manifestations and stages of Rett syndrome. Ment Retard Dev Disabil Res Rev. 2002;8(2):61–5.

    Article  PubMed  Google Scholar 

  • Hagberg B, Aicardi J, Dias K, et al. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann Neurol. 1983;14(4):471–9.

    Article  CAS  PubMed  Google Scholar 

  • Hofstaetter JG, Roetzer KM, Krepler P, et al. Altered bone matrix mineralization in a patient with Rett syndrome. Bone. 2010;47(3):701–5.

    Article  PubMed  Google Scholar 

  • Huppke P, Roth C, Christen HJ, et al. Endocrinological study on growth retardation in Rett syndrome. Acta Paediatr. 2001;90(11):1257–61.

    Article  CAS  PubMed  Google Scholar 

  • Jefferson AL, Woodhead HJ, Fyfe S, et al. Bone mineral content and density in Rett syndrome and their contributing factors. Pediatr Res. 2011;69(4):293–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jefferson A, Fyfe S, Downs J, et al. Longitudinal bone mineral content and density in Rett syndrome and their contributing factors. Bone. 2015;74:191–8.

    Article  PubMed  Google Scholar 

  • Julu PO, Kerr AM, Hansen S, et al. Functional evidence of brain stem immaturity in Rett syndrome. Eur Child Adolesc Psychiatry. 1997;6 Suppl 1:47–54.

    PubMed  Google Scholar 

  • Jürimäe J. Interpretation and application of bone turnover markers in children and adolescents. Curr Opin Pediatr. 2010;22(4):494–500.

    Article  PubMed  Google Scholar 

  • Kamal B, Russell D, Payne A, et al. Biomechanical properties of bone in a mouse model of Rett syndrome. Bone. 2015;71:106–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Killian JT, Lane JB, Cutter GR, et al. Pubertal development in Rett syndrome deviates from typical females. Pediatr Neurol. 2014;51(6):769–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Knight O, Bebbington A, Siafarikas A, et al. Pubertal trajectory in females with Rett syndrome: a population-based study. Brain Dev. 2013;35(10):912–20.

    Article  PubMed  Google Scholar 

  • Leary ET. C-telopeptides. In: Eastell R et al., editors. Bone markers: biochemical and clinical perspectives. 1st ed. London: Martin Dunitz; 2001. p. 39–48.

    Google Scholar 

  • Leonard H, Thomson M, Glasson E, et al. Metacarpophalangeal pattern profile and bone age in Rett syndrome: further radiological clues to the diagnosis. Am J Med Genet. 1999;83(2):88–95.

    Article  CAS  PubMed  Google Scholar 

  • Motil KJ, Schultz RJ, Abrams S, et al. Fractional calcium absorption is increased in girls with Rett syndrome. J Pediatr Gastroenterol Nutr. 2006;42(4):419–26.

    Article  PubMed  Google Scholar 

  • Motil KJ, Ellis KJ, Barrish JO, et al. Bone mineral content and bone mineral density are lower in older than in younger females with Rett syndrome. Pediatr Res. 2008;64(4):435–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Motil KJ, Barrish JO, Lane J, et al. Vitamin D deficiency is prevalent in girls and women with Rett syndrome. J Pediatr Gastroenterol Nutr. 2011;53(5):569–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Motil KJ, Caeg E, Barrish JO, et al. Gastrointestinal and nutritional problems occur frequently throughout life in girls and women with Rett syndrome. J Pediatr Gastroenterol Nutr. 2012;55(3):292–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Motil KJ, Barrish JO, Neul JL, et al. Low bone mineral mass is associated with decreased bone formation and diet in girls with Rett syndrome. J Pediatr Gastroenterol Nutr. 2014;59(3):386–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neul JL, Kaufmann WE, Glaze DG, et al. Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol. 2010;68(6):944–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connor RD, Zayzafoon M, Farach-Carson MC, et al. Mecp2 deficiency decreases bone formation and reduces bone volume in a rodent model of Rett syndrome. Bone. 2009;45(2):346–56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Percy AK, Lane JB, Childers J, et al. Rett syndrome: North American database. J Child Neurol. 2007;22(12):1338–41.

    Article  PubMed  Google Scholar 

  • Percy AK, Neul JL, Glaze DG, et al. Rett syndrome diagnostic criteria: lessons from the Natural History Study. Ann Neurol. 2010;68(6):951–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rauchenzauner M, Schmid A, Heinz-Erian P, et al. Sex- and age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab. 2007;92(2):443–9.

    Article  CAS  PubMed  Google Scholar 

  • Rett A. On a unusual brain atrophy syndrome in hyperammonemia in childhood. Wien Med Wochenschr. 1966;116(37):723–6.

    CAS  PubMed  Google Scholar 

  • Roende G, Ravn K, Fuglsang K, et al. DXA measurements in Rett syndrome reveal small bones with low bone mass. J Bone Miner Res. 2011a;26(9):2280–6.

    Article  CAS  PubMed  Google Scholar 

  • Roende G, Ravn K, Fuglsang K, et al. Patients with Rett syndrome sustain low-energy fractures. Pediatr Res. 2011b;69(4):359–64.

    Article  PubMed  Google Scholar 

  • Roende G, Petersen J, Ravn K, et al. Low bone turnover phenotype in Rett syndrome: results of biochemical bone marker analysis. Pediatr Res. 2014;75(4):551–8.

    Article  CAS  PubMed  Google Scholar 

  • Schultz RJ, Glaze DG, Motil KJ, et al. The pattern of growth failure in Rett syndrome. Am J Dis Child. 1993;147(6):633–7.

    CAS  PubMed  Google Scholar 

  • Shapiro JR, Bibat G, Hiremath G, et al. Bone mass in Rett syndrome: association with clinical parameters and MECP2 mutations. Pediatr Res. 2010;68(5):446–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szulc P, Seeman E, Delmas PD. Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int. 2000;11(4):281–94.

    Article  CAS  PubMed  Google Scholar 

  • Tarquinio DC, Motil KJ, Hou W, et al. Growth failure and outcome in Rett syndrome: specific growth references. Neurology. 2012;79(16):1653–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuchman S, Thayu M, Shults J, et al. Interpretation of biomarkers of bone metabolism in children: impact of growth velocity and body size in healthy children and chronic disease. J Pediatr. 2008;153(4):484–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Coeverden SCCM, Netelenbos JC, de Ridder CM, et al. Bone metabolism markers and bone mass in healthy pubertal boys and girls. Clin Endocrinol (Oxf). 2002;57(1):107–16.

    Article  Google Scholar 

  • van der Sluis IM, Hop WC, van Leeuwen JPTM, et al. A cross-sectional study on biochemical parameters of bone turnover and vitamin d metabolites in healthy dutch children and young adults. Horm Res. 2002;57(5-6):170–9.

    PubMed  Google Scholar 

  • Walsh JS, Henry YM, Fatayerji D, et al. Lumbar spine peak bone mass and bone turnover in men and women: a longitudinal study. Osteoporos Int. 2009;20(3):355–62.

    Article  CAS  PubMed  Google Scholar 

  • Zysman L, Lotan M, Ben-Zeev B. Osteoporosis in Rett syndrome: a study on normal values. Sci World J. 2006;6:1619–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gitte Roende .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Roende, G., Jensen, JE.B. (2017). Bone Markers in Rett Syndrome. In: Patel, V., Preedy, V. (eds) Biomarkers in Bone Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7693-7_21

Download citation

Publish with us

Policies and ethics