Skip to main content

Biomarkers of Bisphosphonate Failure in Osteoporosis

  • Reference work entry
  • First Online:
Biomarkers in Bone Disease

Abstract

Bisphosphonates are the first-line agents for the management of osteoporosis. Through the suppression of bone turnover, they are able to significantly reduce fracture risk in patients with an adequate calcium and vitamin D supplementation. Bisphosphonate failure can be assumed when two or more fragility fractures occur in the course of treatment, but surrogate markers of the efficacy of bisphosphonate treatment are the variations of bone mineral density (BMD) and of bone turnover markers (BTM). Indeed, the demonstration of a significant decrease in BMD and the absence of a significant decrease in BTM while on therapy are considered as indicators of treatment failure. Moreover, other biochemical, clinical, and genetic parameters can be predictive of an inadequate response to bisphosphonate treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFF:

Atypical femoral fracture

ALP:

Alkaline phosphatase

BALP:

Bone-specific alkaline phosphatase

BMD:

Bone mineral density

BSP:

Bone sialoprotein

BTM:

Bone turnover marker

CTX:

Carboxy-terminal cross-linking telopeptide of type I collagen

DPD:

Deoxypyridinoline

FDFT1:

Squalene synthase

FPPS:

Farnesyl pyrophosphate synthase

GGPS:

Geranylgeranyl diphosphate synthase

IFCC:

International Federation of Clinical Chemistry and Laboratory Medicine

IOF:

International Osteoporosis Foundation

LRP5:

Low-density lipoprotein receptor-related protein

LSC:

Least significant change

MVK:

Mevalonate kinase

NTX:

Amino-terminal cross-linking telopeptide of type I collagen

OC:

Osteocalcin

ONJ:

Osteonecrosis of the jaw

PINP:

Amino-terminal propeptide of type I procollagen

VDR:

Vitamin D receptor

References

  • Adler RA, El-Hajj Fuleihan G, Bauer DC, et al. Managing osteoporosis in patients on long-term bisphosphonate treatment: report of a task force of the American society for bone and mineral research. J Bone Miner Res. 2016;31:16–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen MR, Burr DB. The pathogenesis of bisphosphonate-related osteonecrosis of the jaw: so many hypotheses, so few data. J Oral Maxillofac Surg. 2009;67:61–70.

    Article  PubMed  Google Scholar 

  • Baim S, Miller PD. Assessing the clinical utility of serum CTX in postmenopausal osteoporosis and its use in predicting risk of osteonecrosis of the jaw. J Bone Miner Res. 2009;24:561–74.

    Article  CAS  PubMed  Google Scholar 

  • Bauer DC, Black DM, Garnero P, et al. Change in bone turnover and hip, non-spine, and vertebral fracture in alendronate-treated women: the fracture intervention trial. J Bone Miner Res. 2004;19:1250–8.

    Article  PubMed  Google Scholar 

  • Bauer DC, Garnero P, Hochberg MC, et al. Pretreatment levels of bone turnover and the antifracture efficacy of alendronate: the fracture intervention trial. J Bone Miner Res. 2006;21:292–9.

    Article  CAS  PubMed  Google Scholar 

  • Baxter I, Rogers A, Eastell R, et al. Evaluation of urinary N-telopeptide of type I collagen measurements in the management of osteoporosis in clinical practice. Osteoporos Int. 2013;24:941–7.

    Article  CAS  PubMed  Google Scholar 

  • Bergmann P, Body JJ, Boonen S, et al. Evidence-based guidelines for the use of biochemical markers of bone turnover in the selection and monitoring of bisphosphonate treatment in osteoporosis: a consensus document of the Belgian Bone Club. Int J Clin Pract. 2009;63:19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black DM, Thompson DE, Bauer DC, et al. Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group. J Clin Endocrinol Metab. 2000;85:4118–24.

    Article  CAS  PubMed  Google Scholar 

  • Black DM, Delmas PD, Eastell R, et al. HORIZON pivotal fracture trial. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356:1809–22.

    Article  CAS  PubMed  Google Scholar 

  • Brazier JE, Harper R, Jones NM, et al. Validating the SF-36 health survey questionnaire: new outcome measure for primary care. BMJ. 1992;305:160–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairoli E, Eller-Vainicher C, Ulivieri FM, et al. Factors associated with bisphosphonate treatment failure in postmenopausal women with primary osteoporosis. Osteoporos Int. 2014;25:1401–10.

    Article  CAS  PubMed  Google Scholar 

  • Chapurlat RD, Palermo L, Ramsay P, et al. Risk of fracture among women who lose bone density during treatment with alendronate. The Fracture Intervention Trial. Osteoporos Int. 2005;16:842–8.

    Article  CAS  PubMed  Google Scholar 

  • Choi HJ, Choi JY, Cho SW, et al. Genetic polymorphism of geranylgeranyl diphosphate synthase (GGSP1) predicts bone density response to bisphosphonate therapy in Korean women. Yonsei Med J. 2010;51:231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compston J. Monitoring osteoporosis treatment. Best Pract Res Clin Rheumatol. 2009;23:781–8.

    Article  PubMed  Google Scholar 

  • Conti V, Russomanno G, Corbi G, et al. A polymorphism at the translation start site of the vitamin D receptor gene is associated with the response to anti-osteoporotic therapy in postmenopausal women from southern Italy. Int J Mol Sci. 2015;16:5452–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dell RM, Adams AL, Greene DF, et al. Incidence of atypical nontraumatic diaphyseal fractures of the femur. J Bone Miner Res. 2012;27:2544–50.

    Article  PubMed  Google Scholar 

  • Delmas PD, Vrijens B, Eastell R, et al. Effect of monitoring bone turnover markers on persistence with risedronate treatment of postmenopausal osteoporosis. J Clin Endocrinol Metab. 2007;92:1296–304.

    Article  CAS  PubMed  Google Scholar 

  • Delmas PD, Munoz F, Black DM, et al. Effects of yearly zoledronic acid 5 mg on bone turnover markers and relation of PINP with fracture reduction in postmenopausal women with osteoporosis. J Bone Miner Res. 2009;24:1544–51.

    Article  CAS  PubMed  Google Scholar 

  • Díez-Pérez A, Adachi JD, Adami S, et al. Risk factors for treatment failure with antiosteoporosis medication: the global longitudinal study of osteoporosis in women (GLOW). J Bone Miner Res. 2014;29:260–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Díez-Pérez A, González-Macías J. Inadequate responders to osteoporosis treatment: proposal for an operational definition. Osteoporos Int. 2008;19:1511–6.

    Article  PubMed  Google Scholar 

  • Díez-Pérez A, Adachi JD, Agnusdei D, et al. Treatment failure in osteoporosis. Osteoporos Int. 2012a;23:2769–74.

    Article  PubMed  Google Scholar 

  • Díez-Pérez A, Olmos JM, Nogués X, et al. Risk factors for prediction of inadequate response to antiresorptives. J Bone Miner Res. 2012b;27:817–24.

    Article  PubMed  Google Scholar 

  • Eastell R, Barton I, Hannon RA, et al. Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate. J Bone Miner Res. 2003;18:1051–6.

    Article  CAS  PubMed  Google Scholar 

  • Eastell R, Hannon RA, Garnero P, et al. Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate: review of statistical analysis. J Bone Miner Res. 2007;22:1656–60.

    Article  PubMed  Google Scholar 

  • Eastell R, Vrijens B, Cahall DL, et al. Bone turnover markers and bone mineral density response with risedronate therapy: relationship with fracture risk and patient adherence. J Bone Miner Res. 2011;26:1662–9.

    Article  CAS  PubMed  Google Scholar 

  • Eller-Vainicher C, Cairoli E, Zhukouskaya VV, Morelli V, Palmieri S, Scillitani A, Beck-Peccoz P, Chiodini I. Prevalence of subclinical contributors to low bone mineral density and/or fragility fracture. Eur J Endocrinol. 2013;169:225–37.

    Article  CAS  PubMed  Google Scholar 

  • Favus MJ. Bisphosphonates for osteoporosis. N Engl J Med. 2010;363:2027–35.

    Article  CAS  PubMed  Google Scholar 

  • Fink E, Cormier C, Steinmetz P, et al. Differences in the capacity of several biochemical bone markers to assess high bone turnover in early menopause and response to alendronate therapy. Osteoporos Int. 2000;11:295–303.

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick LA. Secondary causes of osteoporosis. Mayo Clin Proc. 2002;77:453–68.

    Article  PubMed  Google Scholar 

  • Garnero P, Darte C, Delmas PD. A model to monitor the efficacy of alendronate treatment in women with osteoporosis using a biochemical marker of bone turnover. Bone. 1999;24:603–9.

    Article  CAS  PubMed  Google Scholar 

  • Gennari L, Merlotti D, De Paola V, et al. Update on the pharmacogenetics of the vitamin D receptor and osteoporosis. Pharmacogenomics. 2009;10:417–33.

    Article  CAS  PubMed  Google Scholar 

  • Greenspan SL, Parker RA, Ferguson L, et al. Early changes in biochemical markers of bone turnover predict the long-term response to alendronate therapy in representative elderly women: a randomized clinical trial. J Bone Miner Res. 1998;13:1431–8.

    Article  CAS  PubMed  Google Scholar 

  • Harris ST, Watts NB, Genant HK, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA. 1999;282:1344–52.

    Article  CAS  PubMed  Google Scholar 

  • Hawley S, Javaid MK, Rubin KH, et al. Incidence and predictors of multiple fractures despite high adherence to oral bisphosphonates: a binational population-based cohort study. J Bone Miner Res. 2016;31:234–44.

    Article  CAS  PubMed  Google Scholar 

  • Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359:1929–36.

    Article  PubMed  Google Scholar 

  • Khosla S, Burr D, Cauley J, et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American society for bone and mineral research. J Bone Miner Res. 2007;22:1479–91.

    Article  PubMed  Google Scholar 

  • Kruk M, Ralston SH, Albagha OM. LRP5 Polymorphisms and response to risedronate treatment in osteoporotic men. Calcif Tissue Int. 2009;84:171–9.

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Vasikaran S. Current recommendations for laboratory testing and use of bone turnover markers in management of osteoporosis. Ann Lab Med. 2012;32:105–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewiecki EM. Nonresponders to osteoporosis therapy. J Clin Densitom. 2003;6:307–14.

    Article  PubMed  Google Scholar 

  • López-Delgado L, Riancho-Zarrabeitia L, Riancho JA. Genetic and acquired factors influencing the effectiveness and toxicity of drug therapy in osteoporosis. Expert Opin Drug Metab Toxicol. 2016;12:389–98.

    Article  PubMed  Google Scholar 

  • Marini F, Falchetti A, Silvestri S, et al. Modulatory effect of farnesyl pyrophosphate synthase (FDPS) rs2297480 polymorphism on the response to long-term amino-bisphosphonate treatment in postmenopausal osteoporosis. Curr Med Res Opin. 2008;24:2609–15.

    Article  CAS  PubMed  Google Scholar 

  • Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312:1254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marx RE, Cillo Jr JE, Ulloa JJ. Oral bisphosphonate-induced osteonecrosis: risk factors, prediction of risk using serum CTX testing, prevention, and treatment. J Oral Maxillofac Surg. 2007;65:2397–410.

    Article  PubMed  Google Scholar 

  • Morales-Santana S, Díez-Pérez A, Olmos JM, et al. Circulating sclerostin and estradiol levels are associated with inadequate response to bisphosphonates in postmenopausal women with osteoporosis. Maturitas. 2015;82:402–10.

    Article  CAS  PubMed  Google Scholar 

  • Naylor KE, Jacques RM, Paggiosi M, et al. Response of bone turnover markers to three oral bisphosphonate therapies in postmenopausal osteoporosis: the TRIO study. Osteoporos Int. 2016;27:21–31.

    Article  CAS  PubMed  Google Scholar 

  • NIH consensus development panel on osteoporosis prevention, diagnosis, and therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285:785–95.

    Google Scholar 

  • Odvina CV, Zerwekh JE, Rao DS, et al. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab. 2005;90:1294–301.

    Article  CAS  PubMed  Google Scholar 

  • Palomba S, Orio Jr F, Russo T, et al. BsmI vitamin D receptor genotypes influence the efficacy of antiresorptive treatments in postmenopausal osteoporotic women. A 1-year multicenter, randomized and controlled trial. Osteoporos Int. 2005;16:943–52.

    Article  CAS  PubMed  Google Scholar 

  • Ravn P, Hosking D, Thompson D, et al. Monitoring of alendronate treatment and prediction of effect on bone mass by biochemical markers in the early postmenopausal intervention cohort study. J Clin Endocrinol Metab. 1999;84:2363–8.

    CAS  PubMed  Google Scholar 

  • Seeman E. Is a change in bone mineral density a sensitive and specific surrogate of anti-fracture efficacy? Bone. 2007;41:308–17.

    Article  CAS  PubMed  Google Scholar 

  • Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev. 2005;26:97–122.

    PubMed  PubMed Central  Google Scholar 

  • Seibel MJ, Naganathan V, Barton I, et al. Relationship between pretreatment bone resorption and vertebral fracture incidence in postmenopausal osteoporotic women treated with risedronate. J Bone Miner Res. 2004;19:323–9.

    Article  CAS  PubMed  Google Scholar 

  • Vasikaran S, Eastell R, Bruyère O, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. 2011;22:391–420.

    Article  CAS  PubMed  Google Scholar 

  • Visekruna M, Wilson D, McKiernan FE. Severely suppressed bone turnover and atypical skeletal fragility. J Clin Endocrinol Metab. 2008;93:2948–52.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zheng H, He JW, et al. Genetic polymorphisms in the mevalonate pathway affect the therapeutic response to alendronate treatment in postmenopausal Chinese women with low bone mineral density. Pharmacogenomics J. 2015;15:158–64.

    Article  CAS  PubMed  Google Scholar 

  • Zhou PR, Liu HJ, Liao EY, et al. LRP5 polymorphisms and response to alendronate treatment in Chinese postmenopausal women with osteoporosis. Pharmacogenomics. 2014;15:821–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elisa Cairoli or Iacopo Chiodini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Cairoli, E., Chiodini, I. (2017). Biomarkers of Bisphosphonate Failure in Osteoporosis. In: Patel, V., Preedy, V. (eds) Biomarkers in Bone Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7693-7_45

Download citation

Publish with us

Policies and ethics