Skip to main content

Biomarkers in Urine and Use of Creatinine

  • Reference work entry
  • First Online:
General Methods in Biomarker Research and their Applications

Abstract

Acute kidney injury (AKI) and chronic kidney disease (CKD) are common and profound issues for human health. Functional biomarkers such as serum creatinine (Scr) have been used as diagnostic indexes for AKI and CKD. In AKI, however, kidney damage precedes functional change. Therefore, novel biomarker candidates have been explored using urine sample. Among these candidates, neutrophil gelatinase-associated lipocalin, liver-type fatty acid-binding protein, interleukin-18, and kidney injury molecule-1 are well examined in patients with AKI in specific clinical settings. Furthermore, besides albuminuria known as the established biomarker in CKD, the usefulness of these urinary biomarkers in CKD is also being recognized. The general use of urinary biomarkers for AKI and CKD has not been qualified, but the incorporation must help understand the renal condition. Meanwhile, when the alteration in urinary biomarkers is evaluated, the fluctuation of urine volume (UV) should be corrected because the fluctuation causes the varied concentration of urinary biomarkers. Urinary biomarker excretion rate (UBER) corrected by UV itself is known as a gold standard method and is calculated as a product of urinary biomarker concentration and UV, which requires timed urine collection. Alternatively, urinary biomarker-to-creatinine ratio (UBCR) corrected by urinary creatinine is used to substitute UBER and is calculated as a quotient of dividing urinary biomarker concentration by urinary creatinine concentration, for which spot urine is available. In the case that creatinine kinetics is under a nonsteady state, UBCR is influenced in a positive and negative way. As a positive way, the reliability of UBCR to detect kidney damage can be enhanced due to the decreased urinary creatinine. As a negative way, the change of UBCR is offset due to the increased urinary creatinine, resulting in the overlook of kidney damage. Therefore, the influence of the nonsteady state of creatinine on the kinetics should be considered when the alteration in urinary biomarkers is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACR:

Albumin-to-Creatinine Ratio

ADQI:

Acute Dialysis Quality Initiative

AER:

Albumin Excretion Rate

AKI:

Acute Kidney Injury

AKIN:

Acute Kidney Injury Network

ARF:

Acute Renal Failure

BUN:

Blood Urea Nitrogen

Ccr:

Creatinine Clearance

Cin:

Inulin Clearance

CKD:

Chronic Kidney Disease

CKD-EPI:

Chronic Kidney Disease Epidemiology Collaboration

CysC:

Cystatin C

ER:

Endoplasmic Reticulum

FA:

Fatty Acid

FABP:

Fatty Acid-Binding Protein

GFcr:

Glomerular-Filtrated Creatinine

GFin:

Glomerular-Filtrated Inulin

GFR:

Glomerular Filtration Rate

IL18:

Interleukin-18

KDIGO:

Kidney Disease: Improving Global Outcomes

KIM-1:

Kidney Injury Molecule-1

L-FABP:

Liver-Type Fatty Acid-Binding Protein

MATE1:

Multidrug and Toxin Extrusion-1

MDRD:

Modification of Diet in Renal Disease

NGAL:

Neutrophil Gelatinase-Associated Lipocalin

OAT:

Organic Anion Transporter

OCT2:

Organic Cation Transporter-2

Scr:

Serum Creatinine

Sin:

Serum Inulin

TScr:

Tubular-Secreted Creatinine

UBCR:

Urinary Biomarker-to-Creatinine Ratio

UBER:

Urinary Biomarker Excretion Rate

UBM:

Urinary Biomarker

Ucr:

Urinary Creatinine

Uin:

Urinary Inulin

UV:

Urine Volume

References

  • Ali T, Khan I, Simpson W, et al. Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol. 2007;18:1292–8.

    Article  CAS  PubMed  Google Scholar 

  • Anders HJ, Muruve DA. The inflammasomes in kidney disease. J Am Soc Nephrol. 2011;22:1007–18.

    Article  CAS  PubMed  Google Scholar 

  • Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41.

    Article  CAS  PubMed  Google Scholar 

  • Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298:2038–47.

    Article  CAS  PubMed  Google Scholar 

  • Cruz DN, Ricci Z, Ronco C. Clinical review: RIFLE and AKIN – time for reappraisal. Crit Care. 2009;13:211.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieterle F, Sistare F, Goodsaid F, et al. Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nat Biotechnol. 2010;28:455–62.

    Article  CAS  PubMed  Google Scholar 

  • Donohoe JF, Venkatachalam MA, Bernard DB, et al. Tubular leakage and obstruction after renal ischemia: structural-functional correlations. Kidney Int. 1978;13:208–22.

    Article  CAS  PubMed  Google Scholar 

  • Edelstein CL, Hoke TS, Somerset H, et al. Proximal tubules from caspase-1-deficient mice are protected against hypoxia-induced membrane injury. Nephrol Dial Transplant. 2007;22:1052–61.

    Article  CAS  PubMed  Google Scholar 

  • Endre ZH, Kellum JA, Di Somma S, et al. Differential diagnosis of AKI in clinical practice by functional and damage biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contrib Nephrol. 2013;182:30–44.

    Article  PubMed  Google Scholar 

  • Fenton RA. Essential role of vasopressin-regulated urea transport processes in the mammalian kidney. Pflugers Arch. 2009;458:169–77.

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Takino T, Endo Y, et al. Shedding of kidney injury molecule-1 by membrane-type 1 matrix metalloproteinase. J Biochem. 2012;152:425–32.

    Article  CAS  PubMed  Google Scholar 

  • Harvey AM, Malvin RL, Vander AJ. Comparison of creatinine secretion in men and women. Nephron. 1966;3:201–5.

    Article  CAS  PubMed  Google Scholar 

  • Herget-Rosenthal S, Marggraf G, Hüsing J, et al. Early detection of acute renal failure by serum cystatin C. Kidney Int. 2004;66:1115–22.

    Article  CAS  PubMed  Google Scholar 

  • Hsu CY, McCulloch CE, Fan D, et al. Community-based incidence of acute renal failure. Kidney Int. 2007;72:208–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Humphreys BD, Czerniak S, DiRocco DP, et al. Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci U S A. 2011;108:9226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hvidberg V, Jacobsen C, Strong RK, et al. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett. 2005;579:773–7.

    Article  CAS  PubMed  Google Scholar 

  • Ichimura T, Asseldonk EJ, Humphreys BD, et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest. 2008;118:1657–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karbach U, Kricke J, Meyer-Wentrup F, et al. Localization of organic cation transporters OCT1 and OCT2 in rat kidney. Am J Physiol Renal Physiol. 2000;279:F679–87.

    CAS  PubMed  Google Scholar 

  • Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.

    Article  Google Scholar 

  • Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.

    Article  Google Scholar 

  • Kuwabara T, Mori K, Mukoyama M, et al. Urinary neutrophil gelatinase-associated lipocalin levels reflect damage to glomeruli, proximal tubules, and distal nephrons. Kidney Int. 2009;75:285–94.

    Article  CAS  PubMed  Google Scholar 

  • Lafrance JP, Miller DR. Acute kidney injury associates with increased long-term mortality. J Am Soc Nephrol. 2010;21:345–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee DB, Huang E, Ward HJ. Tight junction biology and kidney dysfunction. Am J Physiol Renal Physiol. 2006;290:F20–34.

    Article  CAS  PubMed  Google Scholar 

  • Levey AS, Bosch JP, Lewis JB, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130:461–70.

    Article  CAS  PubMed  Google Scholar 

  • Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim AI, Chan LY, Lai KN, et al. Distinct role of matrix metalloproteinase-3 in kidney injury molecule-1 shedding by kidney proximal tubular epithelial cells. Int J Biochem Cell Biol. 2012;44:1040–50.

    Article  CAS  PubMed  Google Scholar 

  • Maatman RG, Van Kuppevelt TH, Veerkamp JH. Two types of fatty acid-binding protein in human kidney. Isolation, characterization and localization. Biochem J. 1991;273:759–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda S, Terada T, Yonezawa A, et al. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephrol. 2006;17:2127–35.

    Article  CAS  PubMed  Google Scholar 

  • McCullough PA, Shaw AD, Haase M, et al. Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth acute dialysis quality initiative consensus conference. Contrib Nephrol. 2013;182:13–29.

    Article  PubMed  Google Scholar 

  • Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Melnikov VY, Ecder T, Fantuzzi G, et al. Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J Clin Invest. 2001;107:1145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran SM, Myers BD. Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int. 1985;27:928–37.

    Article  CAS  PubMed  Google Scholar 

  • Murray PT, Devarajan P, Levey AS, et al. A framework and key research questions in AKI diagnosis and staging in different environments. Clin J Am Soc Nephrol. 2008;3:864–8.

    Article  PubMed  Google Scholar 

  • Newman DJ. Cystatin C. Ann Clin Biochem. 2002;39:89–104.

    Article  CAS  PubMed  Google Scholar 

  • Obregon C, Dreher D, Kok M, et al. Human alveolar macrophages infected by virulent bacteria expressing SipB are a major source of active interleukin-18. Infect Immun. 2003;71:4382–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostermann M, Chang R, Riyadh ICU Program Users Group. Correlation between the AKI classification and outcome. Crit Care. 2008;12:R144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paragas N, Qiu A, Hollmen M, et al. NGAL-Siderocalin in kidney disease. Biochim Biophys Acta. 2012;1823:1451–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shemesh O, Golbetz H, Kriss JP, et al. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 1985;28:830–8.

    Article  CAS  PubMed  Google Scholar 

  • Takuwa S, Ito Y, Ushijima K, et al. Serum cystatin-C values in children by age and their fluctuation during dehydration. Pediatr Int. 2002;44:28–31.

    Article  CAS  PubMed  Google Scholar 

  • Tanihara Y, Masuda S, Sato T, et al. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol. 2007;74:359–71.

    Article  CAS  PubMed  Google Scholar 

  • Tonomura Y, Uehara T, Yamamoto E, et al. Decrease in urinary creatinine in acute kidney injury influences diagnostic value of urinary biomarker-to-creatinine ratio in rats. Toxicology. 2011;290:241–8.

    Article  PubMed  Google Scholar 

  • Tonomura Y, Morikawa Y, Takagi S, et al. Underestimation of urinary biomarker-to-creatinine ratio resulting from age-related gain in muscle mass in rats. Toxicology. 2013;303:169–76.

    Article  CAS  PubMed  Google Scholar 

  • Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2001;2:285–93.

    Article  CAS  PubMed  Google Scholar 

  • Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8.

    Article  CAS  PubMed  Google Scholar 

  • Urakami Y, Kimura N, Okuda M, et al. Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney. Pharm Res. 2004;21:976–81.

    Article  CAS  PubMed  Google Scholar 

  • Vallon V, Eraly SA, Rao SR, et al. A role for the organic anion transporter OAT3 in renal creatinine secretion in mice. Am J Physiol Renal Physiol. 2012;302:F1293–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanmassenhove J, Vanholder R, Nagler E, et al. Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature. Nephrol Dial Transplant. 2013;28:254–73.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Noiri E, Ono Y, et al. Renal L-type fatty acid-binding protein in acute ischemic injury. J Am Soc Nephrol. 2007;18:2894–902.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Tonomura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Tonomura, Y., Matsubara, M., Kazama, I. (2015). Biomarkers in Urine and Use of Creatinine. In: Preedy, V., Patel, V. (eds) General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7696-8_18

Download citation

Publish with us

Policies and ethics