Skip to main content

Collaborative Spectrum Trading and Sharing for Cognitive Radio Networks

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Cognitive Radio

Abstract

Spectrum trading is one of the most promising approaches to enabling dynamic spectrum access (DSA) in cognitive radio networks (CRNs). With this approach, unlicensed users (a.k.a. secondary users) offer licensed users (a.k.a. primary users) with monetary rewards or improved quality of services (QoSs) in exchange for spectrum access rights. In this chapter, we present a comprehensive introduction to spectrum trading. First, we provide a brief introduction to DSA and CRNs as the background and motivation for the spectrum trading. Then, we present various state-of-the-art spectrum trading mechanisms for spectrum sharing. Finally, by analyzing various design issues in these mechanisms, we introduce the concept of service-oriented spectrum trading and offer a novel collaborative network architecture, called a cognitive mesh assisted network, to effectively utilize unused licensed/unlicensed spectrums with high spectral efficiency. We expect that this chapter provides readers with basic understanding on spectrum trading technology and foster future research initiatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Cisco (2016) Cisco visual networking index: global mobile data traffic forecast update, 2015–2020. White paper

    Google Scholar 

  2. Jonathan RA, Karen DG (2015) A summary of recent federal government activities to promote spectrum sharing. IDA Science and Technology Policy Institute

    Google Scholar 

  3. McHenry MA (2005). NSF spectrum occupancy measurements project summary. Shared Spectrum Company Report

    Google Scholar 

  4. President’s Council of Advisors on Science and Technology (PCAST), Executive Office of the President (2012) Report to the president: realizing the full potential of government-held spectrum to spur economic growth

    Google Scholar 

  5. National Science Foundation (2016) NSF leads federal effort to boost advanced wireless research. https://www.nsf.gov/news/news_summ.jsp?cntn_id=139179

  6. Prasad RV, Pawlczak P, Hoffmeyer JA, Berger HS (2008) Cognitive functionality in next generation wireless networks: standardization efforts. IEEE Commun Mag 46(4):72–78

    Article  Google Scholar 

  7. Pastircak J, Gazda J, Kocur D (2014) A survey on the spectrum trading in dynamic spectrum access networks. In: Proceedings IEEE ELMAR 2014, pp 1–4

    Google Scholar 

  8. Hossain E, Niyato D, Kim DI (2015) Evolution and future trends of research in cognitive radio: a contemporary survey. Wirel Commun Mob Comput 15(11):1530–1564

    Article  Google Scholar 

  9. Li XH, Zhao N, Sun Y, Yu FR (2015) Interference alignment based on antenna selection with imperfect channel state information in cognitive radio networks. IEEE Trans Veh Technol 65(7):5497–5511

    Article  Google Scholar 

  10. Xu L, Tonjes R, Paila T, Hansmann W, Frank M, Albrecht M (2000) DRiVE-ing to the internet: dynamic radio for IP services in vehicular environments. In: Proceedings of the 25th Annual IEEE Conference on Local Computer Networks, pp 281–289

    Google Scholar 

  11. Pan M, Yue H, Fang Y, Li H (2012) The X loss: band-mix selection for opportunistic spectrum accessing with uncertain spectrum supply from primary service providers. IEEE Trans Mob Comput 11(12):2133–2144

    Article  Google Scholar 

  12. Huang J (2013) Market mechanisms for cooperative spectrum trading with incomplete network information. IEEE Commun Mag 51(10):201–207

    Article  Google Scholar 

  13. Yan Y, Huang J, Wang J (2013) Dynamic bargaining for relay-based cooperative spectrum sharing. IEEE J Sel Areas Commun 31(8):1480–1493

    Article  Google Scholar 

  14. Simeone O, Stanojev I, Savazzi S, Bar-Ness Y, Spagnolini U, Pickholtz R (2008) Spectrum leasing to cooperating secondary ad hoc networks. IEEE J Sel Areas Commun 26(1):203–213

    Article  Google Scholar 

  15. Zhang Y, Lee C, Niyato D, Wang P (2013) Auction approaches for resource allocation in wireless systems: a survey. IEEE Commun Surv Tutorials 15(3):1020–1041

    Article  Google Scholar 

  16. Zhou X, Gandhi S, Suri S, Zheng H (2008) eBay in the sky: strategy-proof wireless spectrum auctions. In: Proceedings of the 14th ACM International Conference on Mobile Computing and Networking, pp 2–13

    Google Scholar 

  17. Li Z, Li B, Zhu Y (2015) Designing truthful spectrum auctions for multi-hop secondary networks. IEEE Trans Mob Comput 14(2):316–327

    Article  Google Scholar 

  18. Sodagari S, Attar A, Bilen SG (2011) On a truthful mechanism for expiring spectrum sharing in cognitive radio networks. IEEE J Sel Areas Commun 29(4):856–865

    Article  Google Scholar 

  19. Feng X, Lin P, Zhang Q (2015) FlexAuc: serving dynamic demands in a spectrum trading market with flexible auction. IEEE Trans Wirel Commun 14(2):821–830

    Article  Google Scholar 

  20. Zhou X, Zheng H (2009) Trust: a general framework for truthful double spectrum auctions. In: Proceedings IEEE INFOCOM 2009, pp 999–1007

    Google Scholar 

  21. Chen Y, Zhang J, Wu K, Zhang Q (2014) Tames: a truthful double auction for multi-demand heterogeneous spectrums. IEEE Trans Parallel Distrib Syst 25(11):3012–3024

    Article  Google Scholar 

  22. Wang S, Xu P, Xu X, Tang S, Li X, Liu X (2010) TODA: truthful online double auction for spectrum allocation in wireless networks. In: Proceedings of the IEEE Symposium on New Frontiers in Dynamic Spectrum, pp 1–10

    Google Scholar 

  23. Chen Y, Lin P, Zhang Q (2014) LOTUS: location-aware online truthful double auction for dynamic spectrum access. In: Proceedings of the IEEE International Symposium on Dynamic Spectrum Access Networks (DYSPAN), pp 510–518

    Google Scholar 

  24. Zheng Z, Wu F, Tang S, Chen G (2015) AEGIS: an unknown combinatorial auction mechanism framework for heterogeneous spectrum redistribution in noncooperative wireless networks. IEEE/ACM Trans Netw 24(3):1919–1932

    Article  Google Scholar 

  25. Dong M, Sun G, Wang X, Zhang Q (2012) Combinatorial auction with time-frequency flexibility in cognitive radio networks. In: Proceedings of IEEE INFOCOM 2012, pp 2282–2290

    Google Scholar 

  26. Jiang L, Cai H, Chen Y, Zhang J, Li B (2016) Many-to-many matching for combinatorial spectrum trading. In: Proceedings of the IEEE International Conference on Communications (ICC 2016). https://doi.org/https://doi.org/10.1109/ICC.2016.7511434

  27. Gopinathan A, Li Z, Wu C (2011) Strategyproof auctions for balancing social welfare and fairness in secondary spectrum markets. In: Proceedings IEEE INFOCOM 2011, pp 3020–3028

    Google Scholar 

  28. Wu Y, Wang B, Liu KR, Clancy TC (2009) A scalable collusion-resistant multi-winner cognitive spectrum auction game. IEEE Trans Commun 57(12):3805–3816

    Article  Google Scholar 

  29. Pan M, Chen F, Yin X, Fang Y (2009) Fair profit allocation in the spectrum auction using the shapley value. In: Proceedings of the IEEE Global Telecommunications Conference, pp 1–6

    Google Scholar 

  30. Li M, Li P, Guo L, Huang X (2015) PPER: privacy-preserving economic-robust spectrum auction in wireless networks. In: Proceedings IEEE INFOCOM 2015, pp 909–917

    Google Scholar 

  31. Niyato D, Hossain E (2008) Market-equilibrium, competitive, and cooperative pricing for spectrum sharing in cognitive radio networks: analysis and comparison. IEEE Trans Wirel Commun 7(11):4273–4283

    Article  Google Scholar 

  32. Gao L, Wang X, Xu Y, Zhang Q (2011) Spectrum trading in cognitive radio networks: a contract-theoretic modeling approach. IEEE J Sel Areas Commun 29(4):843–855

    Article  Google Scholar 

  33. Gao L, Huang J, Chen YJ, Shou B (2013) An integrated contract and auction design for secondary spectrum trading. IEEE J sel Areas Commun 31(3):581–592

    Article  Google Scholar 

  34. Yin J, Sun G, Wang X (2013) Spectrum trading in cognitive radio network: a two-stage market based on contract and stackelberg game. In: Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), pp 1679–1684

    Google Scholar 

  35. Jin H, Sun G, Wang X, Zhang Q (2012) Spectrum trading with insurance in cognitive radio networks. In: Proceedings of IEEE INFOCOM 2012, pp 2041–2049

    Google Scholar 

  36. Presidential Memorandum (2010) Unleashing the wireless broadband revolution. https://www.whitehouse.gov/the-press-office/presidential-memorandum-unleashing-wireless-broadband-revolution

  37. Li M, Li P, Pan M, Sun J (2013) Economic-robust transmission opportunity auction in multi-hop wireless networks. In: Proceedings of IEEE INFOCOM 2013, pp 1842–1850

    Google Scholar 

  38. Pan M, Li P, Song Y, Fang Y, Lin P (2012) Spectrum clouds: a session based spectrum trading system for multi-hop cognitive radio networks. In: Proceedings of IEEE INFOCOM 2012, pp 1557–1565

    Google Scholar 

  39. Pan M, Li P, Song Y, Fang Y, Lin P, Glisic S (2014) When spectrum meets clouds: optimal session based spectrum trading under spectrum uncertainty. IEEE J Sel Areas Commun 32(3):615–627

    Article  Google Scholar 

  40. Li X, Pan M, Song Y, Sun Y, Fang Y (2015) Economic-robust session based spectrum trading in multi-hop cognitive radio networks. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), pp 1–6

    Google Scholar 

  41. Huang H, Sun YE, Li XY, Chen S, Xiao M, Huang L (2015) Truthful auction mechanisms with performance guarantee in secondary spectrum markets. IEEE Trans Mob Comput 14(6): 1315–1329

    Article  Google Scholar 

  42. Fu F, van der Schaar M (2009) Learning to compete for resources in wireless stochastic games. IEEE Trans Veh Technol 58(4):1904–1919

    Article  Google Scholar 

  43. Han Z, Zheng R, Poor HV (2011) Repeated auctions with Bayesian nonparametric learning for spectrum access in cognitive radio networks. IEEE Trans Wirel Commun 10(3):890–900

    Article  Google Scholar 

  44. Tang W, Jain R (2012) Hierarchical auction mechanisms for network resource allocation. IEEE J Sel Areas Commun 30(11):2117–2125

    Article  Google Scholar 

  45. Lin P, Feng X, Zhang Q, Hamdi M (2013) Groupon in the air: a three-stage auction framework for spectrum group-buying. In: Proceedings of IEEE INFOCOM 2013, pp 2013–2021

    Google Scholar 

  46. Niyato D, Hossain E, Han Z (2009) Dynamics of multiple-seller and multiple-buyer spectrum trading in cognitive radio networks: a game-theoretic modeling approach. IEEE Trans Mob Comput 8(8):1009–1022

    Article  Google Scholar 

  47. Xing Y, Chandramouli R, Cordeiro C (2007) Price dynamics in competitive agile spectrum access markets. IEEE J Sel Areas Commun 25(3):613–621

    Article  Google Scholar 

  48. Bajaj I, Lee YH, Gong Y (2015) A spectrum trading scheme for licensed user incentives. IEEE Trans Commun 63(11):4026–4036

    Article  Google Scholar 

  49. Xu D, Liu X, Han Z (2013) Decentralized bargain: a two-tier market for efficient and flexible dynamic spectrum access. IEEE Trans Mob Comput 12(9):1697–1711

    Article  Google Scholar 

  50. Pan M, Zhang C, Li P, Fang Y (2012) Spectrum harvesting and sharing in multi-hop CRNs under uncertain spectrum supply. IEEE J Sel Areas Commun 30(2):369–378

    Article  Google Scholar 

  51. Peng J, Yue H, Xue K, Luo Y, Hong P, Fang Y (2016) Energy-aware scheduling for multi-hop cognitive radio networks. IEEE Trans Cogn Commun Netw 2(4):397–410

    Article  Google Scholar 

  52. Wang J, Yue H, Hai L, Fang Y (2016) Spectrum-aware anypath routing in multi-hop cognitive radio networks. IEEE Trans Mob Comput 16(4):1176–1187

    Article  Google Scholar 

  53. Pan M, Yue H, Zhang C, Fang Y (2013) Path selection under budget constraints in multi-hop cognitive radio networks. IEEE Trans Mob Comput 12(6):1133–1145

    Article  Google Scholar 

  54. Ding H, Fang Y, Huang X, Pan M, Li P, Glisic S (2017, to appear) Cognitive capacity harvesting networks: architectural evolution towards future cognitive radio networks. IEEE Commun Surv Tutorials

    Google Scholar 

  55. Li X, Ding H, Pan M, Sun Y, Fang Y (2016) Users first: service-oriented spectrum auction With a two-tier framework support. IEEE J Sel Areas Commun 34(11):2999–3013

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by US National Science Foundation under grants CNS-1343356/CNS-1602172/CNS-1343361, CNS-1409797 and CNS-1423165. The work of M. Pan was also partially supported by US National Science Foundation under grants CNS-1350230 (CAREER) and CPS-1646607. The work of P. Li was also partially supported by US National Science Foundation under grant CNS-1566479 (CAREER). The work of X. Huang was partially supported by the Joint Program of National Science Foundation of China-Guangdong under grants No. U1501255 and No. U1301256. The work of S. Glisic was partially supported by Taseen Käyttö CWC-NS Glisic Menot under 240007101 and ADTEC-2016 Menot under 2410067111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Li .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Li, X. et al. (2017). Collaborative Spectrum Trading and Sharing for Cognitive Radio Networks. In: Zhang, W. (eds) Handbook of Cognitive Radio . Springer, Singapore. https://doi.org/10.1007/978-981-10-1389-8_27-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1389-8_27-2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1389-8

  • Online ISBN: 978-981-10-1389-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Collaborative Spectrum Trading and Sharing for Cognitive Radio Networks
    Published:
    11 August 2017

    DOI: https://doi.org/10.1007/978-981-10-1389-8_27-2

  2. Original

    Collaborative Spectrum Trading and Sharing for Cognitive Radio Networks
    Published:
    29 May 2017

    DOI: https://doi.org/10.1007/978-981-10-1389-8_27-1