Skip to main content

Distributed Raman Sensing

  • Living reference work entry
  • First Online:
Handbook of Optical Fibers

Abstract

The Raman scattering effect constitutes one of the basic physical mechanisms exploited in optical fiber distributed temperature sensing. In particular Raman distributed temperature sensors (RDTS) have been developed for more than three decades, becoming today a mature technology that is widely applied to several strategic industrial fields. Making use of the thermally-activated spontaneous Raman scattering (SpRS) process, continuous measurements of a temperature profile over a sensing range of tens of kilometers can be obtained with high accuracy and meter-scale spatial resolution. Knowing the distributed temperature profile over large infrastructures provides a powerful technique for applications ranging from oil and gas to fire detection, and from energy production to transportation applications and environmental monitoring. Although this technology can be considered to be quite mature, research on Raman distributed temperature sensing is still active, with the main goal being extending the sensing distance while keeping high spatial resolution and a low cost of the system, and providing reliable and robust RDTS units able to operate in harsh environments.

In this book chapter, after a first description of the physical mechanisms behind Raman scattering, the working principle of RDTS system is provided along with a description of the most-common system configurations. Then, advanced techniques to improve the RDTS performance (e.g., pulse coding and image processing) are presented. In the final section, some examples of RDTS industrial applications are addressed, presenting several field trials which demonstrate the effectiveness of RDTS as practical monitoring solutions in a wide range of industrial fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • G.P. Agrawal, Fiber-Optic Communication Systems, 4th edn. (Wiley, New York, 2010)

    Google Scholar 

  • M.K. Barnoski, M.D. Rourke, S.M. Jensen, R.T. Melville, Optical time domain reflectometer. Appl. Opt. 16(9), 2375–2379 (1977)

    Article  Google Scholar 

  • F. Baronti, A. Lazzeri, R. Roncella, R. Saletti, A. Signorini, M.A. Soto, G. Bolognini, F. Di Pasquale, SNR enhancement of Raman-based long-range distributed temperature sensors using cyclic simplex codes. Electron. Lett. 46(17), 1221–1223 (2010)

    Article  Google Scholar 

  • G. Bolognini, J. Park, M.A. Soto, N. Park, F. Di Pasquale, Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification. Meas. Sci. Technol. 18(10), 3211–3218 (2007.) Special Issue: Optical Fibre Sensors

    Article  Google Scholar 

  • R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic, San Diego, 2003)

    Google Scholar 

  • A. Buades, B. Coll, J.M. Morel, A review of image denoising methods, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  Google Scholar 

  • B. Culshaw, A. Kersey, Fiber-optic sensing: a historical perspective. J. Lightwave Technol. 26(9), 1064–1078 (2008)

    Article  Google Scholar 

  • J.P. Dakin, A.D. Kersey, Distributed optic fiber sensors. Proc. SPIE 1797, 76 (1993)

    Article  Google Scholar 

  • J.P. Dakin, D.J. Pratt, Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector. Electron. Lett. 21(13), 569–570 (1985)

    Article  Google Scholar 

  • W. Eickhoff, R. Ulrich, Optical frequency domain reflectometry in single-mode fiber. Appl. Phys. Lett. 39, 693 (1981)

    Article  Google Scholar 

  • M.A. Farahani, T. Gogolla, Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing. J. Lightwave Technol. 17(8), 1379–1391 (1999)

    Article  Google Scholar 

  • A.F. Fernandez, P. Rodeghiero, B. Brichard, F. Berghmans, A.H. Hartog, P. Hughes, K. Williams, A.P. Leach, Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures. IEEE Trans. Nucl. Sci. 52(6), 2689–2691 (2005)

    Article  Google Scholar 

  • M.J.E. Golay, Complementary series. IRE Trans. Inf. Theory 7(2), 82–87 (1961)

    Article  Google Scholar 

  • A.H. Hartog, A.P. Leach, Distributed temperature sensing in solid-core fibres. Electron. Lett. 21(23), 1061–1062 (1985)

    Article  Google Scholar 

  • M. Harwit, N.J.A. Sloane, Hadamard Transform Optics (Academic, New York, 1979)

    Google Scholar 

  • P. Healey, Complementary code sets for OTDR. Electron. Lett. 25(11), 692–693 (1989)

    Article  Google Scholar 

  • T. Horiguchi, M. Tateda, BOTDA – nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory. J. Lightwave Technol. 7(8), 1170–1176 (1989)

    Article  Google Scholar 

  • D. Hwang, D.-J. Yoon, I.-B. Kwon, D.-C. Seo, Y. Chung, Novel auto-correction method in a fiber-optic distributed-temperature sensor using reflected antistokes Raman scattering. Opt. Express 18(10), 9747–9754 (2010)

    Article  Google Scholar 

  • N.M. Islam, Raman Amplifiers for Telecommunications 1: Physical Principles (Springer, New York, 2004)

    Book  Google Scholar 

  • M. Jaaskelainen, Temperature monitoring of geothermal energy wells. Proc. SPIE 7653, 765303 (2010)

    Article  Google Scholar 

  • M.D. Jones, Using simplex codes to improve OTDR sensitivity. IEEE Photon. Technol. Lett. 5(7), 822–824 (1993)

    Article  Google Scholar 

  • K. Kikuchi, T. Naito, T. Okoshi, Measurement of Raman scattering in single-mode optical fiber by time-domain reflectometry. IEEE J. Quantum Electron. 24(10), 1973–1975 (1988)

    Article  Google Scholar 

  • K. Kikuci, T. Naito, T. Okoshi, Measurement of Raman scattering in single-mode optical fiber by time-domain-reflectometry. IEEE J. Quantum Electron. 24(10), 1973–1975 (1988)

    Article  Google Scholar 

  • A. Kimura, E. Takada, K. Fujita, M. Nakazawa, H. Takahashi, S. Ichige, Application of a Raman distributed temperature sensor to the experimental fast reactor JOYO with correction techniques. Meas. Sci. Technol. 12(7), 966–973 (2001)

    Google Scholar 

  • D. Lee, H. Yoon, N.Y. Kim, H. Lee, N. Park, Analysis and experimental demonstration of simplex coding technique for SNR enhancement of OTDR, in Proceedings of IEEE LTIMC 2004 (2004)

    Google Scholar 

  • S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation. Pattern Anal. Mach. Intell. IEEE Trans. on 11(7), 674–693 (1989)

    Article  Google Scholar 

  • S. Namiki, Y. Emori, Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes. IEEE J. Sel. Top. Quantum Electron. 7(1), 3–16 (2001)

    Article  Google Scholar 

  • M. Nazarathy, S.A. Newton, R.P. Giffard, D.S. Moberly, F. Sischka, W.R. Trutna, S. Foster, Real-time long-range complementary correlation optical time-domain reflectometer. J. Lightwave Technol. 7(1), 24–38 (1989)

    Article  Google Scholar 

  • M. Nazarathy, S.A. Newton, W.R. Trutna, Complementary correlation OTDR with three codewords. Electron. Lett. 26(1), 70–71 (1990)

    Article  Google Scholar 

  • J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, F. Di Pasquale, N. Park, Raman-based distributed temperature sensor with simplex coding and link optimisation. IEEE Photon. Technol. Lett. 18, 1879–1881 (2006)

    Article  Google Scholar 

  • A. Rogers, Distributed optical fiber sensing. Meas. Sci. Technol. 1(8), 75–99 (1999)

    Article  Google Scholar 

  • M.K. Saxena et al., Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals. Opt. Laser Technol. 65, 14–24 (2015)

    Article  Google Scholar 

  • A. Signorini, T. Nannipieri, L. Gabella, F. Di Pasquale, G. Latini, D. Ripari, Raman distributed temperature sensor for oil leakage detection in soil: a field trial and future trends, 23rd International Conference on Optical Fiber Sensors 2014 (Santander, Spain, 2014)

    Google Scholar 

  • A. Signorini, T. Nannipieri, F. Di Pasquale, E. Fedeli, E. Marzilli, Fire detection in long railway tunnels using high performance Raman based optical fiber sensors, 11th WCRR (World Congress on Railway Research) (Milan, 29th May, 2nd June 2016)

    Google Scholar 

  • H.Y. Song, S.W. Golomb, Some new constructions for simplex codes. IEEE Trans. Inf. Theory 40(2), 504–507 (1994)

    Article  Google Scholar 

  • M.A. Soto, P.K. Sahu, S. Faralli, G. Bolognini, F. Di Pasquale, B. Nebendahl, C. Rueck, Distributed temperature sensor system based on Raman scattering using correlation-codes, IEE Electron. Lett. 43(16), 862–864 (2007)

    Google Scholar 

  • M.A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, F. Di Pasquale, Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding. Opt. Lett. 36(13), 2557–2559 (2011a)

    Article  Google Scholar 

  • M.A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, F. Di Pasquale, Advanced cyclic coding technique for long-range Raman DTS systems with meter-scale spatial resolution over standard SMF, in IEEE Sensors Conference 2011 (Limerick, Ireland, 2011b), paper 1767

    Google Scholar 

  • M.A. Soto, A. Signorini, T. Nannipieri, S. Faralli, G. Bolognini, F. Di Pasquale, Impact of loss variations on double-ended distributed temperature sensors based on Raman anti-stokes signal only. J. Lightwave Technol. 30(8), 1215–1222 (2012)

    Article  Google Scholar 

  • M.A. Soto, J.A. Ramírez, L. Thévenaz, Intensifying Brillouin distributed fibre sensors using image processing, in Proceedings of SPIE 9634, 24th International Conference on Optical Fibre Sensors (2015), 96342D

    Google Scholar 

  • M.A. Soto, J.A. Ramírez, L. Thévenaz, Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration. Nat. Commun. 7, 10870 (2016a)

    Article  Google Scholar 

  • M.A. Soto, J.A. Ramírez, L. Thévenaz, Reaching millikelvin resolution in Raman distributed temperature sensing using image processing, in Proceedings of SPIE 9916, 6th European Workshop on Optical Fibre Sensors (2016b), 99162A

    Google Scholar 

  • K. Suh, C. Lee, Auto-correction method for differential attenuation in a fiber-optic distributed-temperature sensor. Opt. Lett. 33(16), 1845–1847 (2008)

    Article  Google Scholar 

  • I. Toccafondo, T. Nannipieri, A. Signorini, E. Guillermain, J. Kuhnhenn, M. Brugger, F. Di Pasquale, Raman distributed temperature measurement at CERN high energy AcceleRator mixed field facility (CHARM). IEEE Phot. Technol. Lett. 27(20), 2182–2185 (2015a)

    Article  Google Scholar 

  • I. Toccafondo, T. Nannipieri, A. Signorini, E. Guillermain, J. Kuhnhenn, M. Brugger, F. Di Pasquale, Raman distributed temperature measurement at CERN high energy AcceleRator mixed field facility (CHARM). IEEE Photon. Technol. Lett. 27(20), 2182–2185 (2015b)

    Article  Google Scholar 

  • I. Toccafondo, Y.E. Marin, E. Guillermain, J. Kuhnhenn, J. Mekki, M. Brugger, F. Di Pasquale, Distributed optical fiber radiation sensing in a mixed-field radiation environment at CERN, to be published in J. Lightwave Technol. 35(16), 3303–3310 (2017)

    Google Scholar 

  • W.M. Tolles, J.W. Nibler, J.R. McDonald, A.B. Harvey, A review of the theory and application of coherent anti-stokes Raman spectroscopy (CARS). Appl. Spectrosc. 31(4), 253–271 (1977)

    Article  Google Scholar 

  • P.C. Wait, K.D. Souza, T.P. Newson, A theoretical comparison of spontaneous Raman and Brillouin based fibre optic distributed temperature sensors. Opt. Commun. 144, 17–23 (1997)

    Article  Google Scholar 

  • S. Yin, P.B. Ruffin, F.T.S. Yu, Fiber Optic Sensors, 2nd edn., ed. by CRC Press (Taylor and Francis Group, Boca Raton, FL, 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo A. Soto .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Soto, M.A., Di Pasquale, F. (2018). Distributed Raman Sensing. In: Peng, GD. (eds) Handbook of Optical Fibers. Springer, Singapore. https://doi.org/10.1007/978-981-10-1477-2_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1477-2_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1477-2

  • Online ISBN: 978-981-10-1477-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics