Skip to main content

Nanoindentation for Testing Material Properties

  • Living reference work entry
  • First Online:
Handbook of Mechanics of Materials
  • 496 Accesses

Abstract

Nanoindentation has seen widespread applications for characterizing the mechanical properties of materials. The technique involves the measurement of applied load and penetration depth, at very small scales, when the indenter is pressed against the test material. An indentation test requires minimal material preparation, and can be performed multiple times on a single specimen. It is particularly suited for thin films, coatings and modified surfaces, as well as materials in their bulk form. Rooted in classical contact mechanics, theories and practice of nanoindentation testing have been developed to extract a wide array of material properties. This chapter presents a comprehensive overview of the fundamentals of nanoindentation. Background information about the indentation theories is first reviewed, with emphasis on the relevant Hertzian contact analysis and Sneddon’s solutions. Common indenter types are then presented, which is followed by discussion on the two most frequently measured properties, hardness and elastic modulus. Guidelines and best practices for the determination of contact stiffness and contact area, along with corrections of thermal drift and machine compliance, are discussed. Representative indentation methodologies for characterizing residual stresses, time-dependent deformation for metals and polymers, fracture toughness for brittle materials, and adhesion of coatings on substrates are also included in the presentation. Computational modeling is shown to yield valuable information of internal deformation field which can be correlated with the indentation response. Unique indentation features and uncertainties associated with material heterogeneity, as well as remaining challenges and future directions, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Doerner MF, Nix WD. A method for interpreting the data from depth-sensing indentation instruments. J Mater Res. 1986;1:601–9.

    Article  Google Scholar 

  2. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–38.

    Article  Google Scholar 

  3. Hay JL, Pharr GM. Instrumented indentation testing. In: Kuhn H, Medlin D, editors. ASM handbook volume 8: mechanical testing and evaluation. Materials Park: ASM International; 2000.

    Google Scholar 

  4. Fisher-Cripps A. Nanoindentation. New York: Springer; 2002.

    Book  Google Scholar 

  5. Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20.

    Article  Google Scholar 

  6. Gouldstone A, Challacoop N, Dao M, Li J, Minor AM, Shen Y-L. Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Mater. 2007;55:4015–39.

    Article  Google Scholar 

  7. Lawn BR, Cook RF. Probing material properties with sharp indenters: a retrospective. J Mater Sci. 2012;47:1–22.

    Article  Google Scholar 

  8. Hertz H. On the contact of elastic solids. J Reine Angew Math. 1882;92:156–71.

    MathSciNet  MATH  Google Scholar 

  9. Tabor D. The hardness of metals. Oxford: Clarendon Press; 1951.

    Google Scholar 

  10. Suresh S. Fatigue of materials. 2nd ed. Cambridge: Cambridge University Press; 1998.

    Book  Google Scholar 

  11. Mathews JR. Indentation hardness and hot pressing. Acta Metall. 1980;28:311–8.

    Article  Google Scholar 

  12. Sneddon IN. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci. 1965;3:47–57.

    Article  MathSciNet  MATH  Google Scholar 

  13. Pharr GM, Oliver WC, Brotzen FR. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J Mater Res. 1992;7:613–7.

    Article  Google Scholar 

  14. King RB. Elastic analysis of some punch problems for a layered medium. Int J Solids Struct. 1987;23:1657–64.

    Article  MATH  Google Scholar 

  15. Field JS, Swain MV. A simple predictive model for spherical indentation. J Mater Res. 1993;8:297–306.

    Article  Google Scholar 

  16. Li X, Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact. 2002;48:11–36.

    Article  Google Scholar 

  17. Mencik J, Munz D, Quandt E, Weppelmann ER, Swain MV. Determination of elastic modulus of thin layers using nanoindentation. J Mater Res. 1997;12:2475–84.

    Article  Google Scholar 

  18. Gao H, Chiu C-H, Lee J. Elastic contact versus indentation modeling of multilayered materials. Int J Solids Struct. 1992;29:2471–92.

    Article  Google Scholar 

  19. Shen Y-L. Constrained deformation of materials. New York: Springer; 2010.

    Book  Google Scholar 

  20. Yang F, Li JCM. Impression test – a review. Mater Sci Eng R. 2013;74:233–53.

    Article  Google Scholar 

  21. Mayo M, Siegel RW, Narayanasamy A, Nix WD. Mechanical properties of nanophase TiO2 as determined by nanoindentation. J Mater Res. 1990;5:1073–82.

    Article  Google Scholar 

  22. Lucas BN, Oliver WC. Indentation power-law creep of high-purity indium. Metall Mater Trans A. 1999;30A:601–10.

    Article  Google Scholar 

  23. Cheng Y-T, Cheng C-M. What is indentation hardness? Surf Coat Technol. 2000;133–134:417–24.

    Article  Google Scholar 

  24. Martinez NJ, Shen Y-L. Analysis of indentation-derived power-law creep response. J Mater Eng Perform. 2016;25:1109–16.

    Article  Google Scholar 

  25. Herbert EG, Oliver WC, Pharr GM. Nanoindentation and the dynamic characterization of viscoelastic solids. J Phys D Appl Phys. 2008;41:074021.

    Article  Google Scholar 

  26. Tsui TY, Oliver WC, Pharr GM. Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. J Mater Res. 1996;11:752–9.

    Article  Google Scholar 

  27. Bolshakov A, Oliver WC, Pharr GM. Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations. J Mater Res. 1996;11:760–8.

    Article  Google Scholar 

  28. Suresh S, Giannalopoulos AE. A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 1998;46:5755–67.

    Article  Google Scholar 

  29. Swadener JG, Taljat B, Pharr GM. Measurement of residual stress by load and depth sensing indentation with spherical indenters. J Mater Res. 2001;16:2091–102.

    Article  Google Scholar 

  30. Francis HA. Phenomenological analysis of plastic spherical indentation. J Eng Mater Technol. 1976;98:272–81.

    Article  Google Scholar 

  31. Taljat B, Pharr GM. Measurement of residual stresses by load and depth sensing spherical indentation. In: Besser P, Shaffer II E, Kraft O, Moody N, Vinci R, editors. Materials research society symposium proceedings volume 594: thin films – stresses & mechanical properties VIII. Cambridge: Cambridge University Press; 2000. p. 519–24.

    Google Scholar 

  32. Olivas ER, Swadener JG, Shen Y-L. Nanoindentation measurement of surface residual stresses in particle-reinforced metal matrix composites. Scr Mater. 2006;54:263–8.

    Article  Google Scholar 

  33. Anstis GR, Chantikul P, Lawn BR, Marshall DB. A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J Am Ceram Soc. 1981;64:533–8.

    Article  Google Scholar 

  34. Bhushan B, Li X. Nanomechanical characterization of solid surfaces and thin films. Int Mater Rev. 2003;48:125–64.

    Article  Google Scholar 

  35. Meyers MA, Chawla KK. Mechanical behavior of materials. 2nd ed. Cambridge: Cambridge University Press; 2009.

    MATH  Google Scholar 

  36. Chiang SS, Marshall DB, Evans AG. A simple method for adhesion measurements. In: Pask J, Evans AG, editors. Surfaces and interfaces in ceramics and ceramic–metal systems. New York: Plenum; 1981. p. 603–12.

    Chapter  Google Scholar 

  37. Marshall DB, Evans AG. Measurement of adherence of residually stressed thin films by indentation mechanics of interface delamination. J Appl Phys. 1984;56:2632–8.

    Article  Google Scholar 

  38. Vlassak JJ, Drory MD, Nix WD. A simple technique for measuring the adhesion of brittle films to ductile substrates with application to diamond-coated titanium. J Mater Res. 1997;12:1900–10.

    Article  Google Scholar 

  39. Benjamin P, Weaver C. Measurement of adhesion of thin films. Proc R Soc Lond A. 1960;254:163–76.

    Article  Google Scholar 

  40. Tang G, Shen Y-L, Singh DRP, Chawla N. Indentation behavior of metal-ceramic multilayers at the nanoscale: numerical analysis and experimental verification. Acta Mater. 2010;58:2033–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Lin Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shen, YL. (2018). Nanoindentation for Testing Material Properties. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6855-3_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6855-3_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6855-3

  • Online ISBN: 978-981-10-6855-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics