Skip to main content

Catalytic Applications of Noble Metal Nanoparticles Produced by Sonochemical Reduction of Noble Metal Ions

  • Reference work entry
  • First Online:
Handbook of Ultrasonics and Sonochemistry

Abstract

Noble metal nanoparticles have great potential for application as catalysts. Their catalytic properties depend sensitively on the size, structure, and shape of the metal nanoparticles and their combination with support materials. Sonochemistry is a possible approach for the efficient production of powerful noble metal nanoparticle-based catalysts. When an aqueous solution is irradiated by ultrasound, unique chemical effects (radical reactions and thermal reactions) and physical effects (shock waves and micro-jet flow) are simultaneously generated during acoustic cavitation. Inside the bubbles and the gas/liquid interfaces that occur during acoustic cavitation are specific reaction fields that can induce unique chemical reactions. In this chapter, the sonochemical reduction of noble metal ions, the synthesis of noble metal nanoparticles, and their immobilization on support materials are described. The applications of sonochemically prepared nanoparticles to catalytic hydrogenation reactions and photocatalytic reactions are also described. In addition, sonochemical synthesis and its application to noble metal–magnetic nanocomposites and to the catalytic growth behavior of sonochemically synthesized seed particles are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Semagina N, Renken A, Laub D, Kiwi-Minsker L (2007) Synthesis of monodispersed palladium nanoparticles to study structure sensitivity of solvent-free selective hydro-genation of 2-methyl-3-butyn-2-ol. J Catal 246:308–314

    Article  CAS  Google Scholar 

  2. Bianchini C, Shen K (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109:4183–4206

    Article  CAS  Google Scholar 

  3. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  4. Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO (2011) Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed 50:11312–11359

    Article  CAS  Google Scholar 

  5. Yu YY, Chang SS, Lee CL, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664

    Article  CAS  Google Scholar 

  6. Mohamed MB, Ismail KZ, Link S, El-Sayed MA (1998) Thermal reshaping of gold nanorods in micelles. J Phys Chem B 102:9370–9374

    Article  CAS  Google Scholar 

  7. Esumi K, Matsuhisa K, Torigoe K (1995) Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template. Langmuir 11:3285–3287

    Article  CAS  Google Scholar 

  8. Kim F, Song JH, Yang P (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124:14316–14317

    Article  CAS  Google Scholar 

  9. Saito N, Hieda J, Takai O (2009) Synthesis process of gold nanoparticles in solution plasma. Thin Solid Films 518:912–917

    Article  CAS  Google Scholar 

  10. Mizukoshi Y, Masahashi N, Tanabe S (2014) Formation mechanism of noble metal nanoparticles in aqueous solution by solution plasma. Sci Adv Mater 6:1569–1572

    Article  CAS  Google Scholar 

  11. Katsikas L, Gutiérrez M, Henglein A (1996) Bimetallic colloids: silver and mercury. J Phys Chem 100:11203–11206

    Article  CAS  Google Scholar 

  12. Dey GR, El Omar AK, Jacob JA, Mostafavi M, Belloni J (2011) Mechanism of trivalent gold reduction and reactivity of transient divalent and monovalent gold ions studied by gamma and pulse radiolysis. J Phys Chem A 115:383–391

    Article  CAS  Google Scholar 

  13. Gutierrez MS, Henglein A, Dohrmann JK (1987) H atom reactions in the sonolysis of aqueous solutions. J Phys Chem 91:6687–6690

    Article  CAS  Google Scholar 

  14. Nagata Y, Watanabe Y, Fujita S, Dohmaru T, Taniguchi S (1992) Formation of colloidal silver in water by ultrasonic irradiation. J Chem Soc Chem Commun :1620–1622

    Google Scholar 

  15. Yeung SA, Hobson R, Biggs S, Grieser F (1993) Formation of gold sols using ultrasound. J Chem Soc Chem Commun :378–379

    Google Scholar 

  16. Nagata Y, Mizukoshi Y, Okitsu K, Maeda Y (1996) Sonochemical formation of gold particles in aqueous solution. Radiat Res 146:333–338

    Article  CAS  Google Scholar 

  17. Grieser F, Hobson R, Sostaric J, Mulvaney P (1996) Sonochemical reduction processes in aqueous colloidal systems. Ultrasonics 34:547–550

    Article  CAS  Google Scholar 

  18. Okitsu K, Bandow H, Maeda Y, Nagata Y (1996) Sonochemical preparation of ultrafine palladium particles. Chem Mater 8:315–317

    Article  CAS  Google Scholar 

  19. Okitsu K, Mizukoshi Y, Bandow H, Maeda Y, Yamamoto T, Nagata Y (1996) Formation of noble metal particles by ultrasonic irradiation. Ultrason Sonochem 3:S249–S251

    Article  CAS  Google Scholar 

  20. Mizukoshi Y, Oshima R, Maeda Y, Nagata Y (1999) Preparation of platinum nanoparticles by sonochemical reduction of the Pt(II) ion. Langmuir 15:2733–2737

    Article  CAS  Google Scholar 

  21. Mizukoshi Y, Takagi E, Okuno H, Oshima R, Maeda Y, Nagata Y (2001) Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions: role of surfactants. Ultrason Sonochem 8:1–6

    Article  CAS  Google Scholar 

  22. Caruso RA, Ashokkumar M, Grieser F (2002) Sonochemical formation of gold sols. Langmuir 18:7831–7836

    Article  CAS  Google Scholar 

  23. Alegria AE, Lion Y, Kondo T, Riesz P (1989) Sonolysis of aqueous surfactant solutions. Probing the interfacial region of cavitation bubbles by spin trapping. J Phys Chem 93:4908–4913

    Article  CAS  Google Scholar 

  24. Sakai T, Enomoto H, Torigoe K, Sakai H, Abe M (2009) Surfactant- and reducer-free synthesis of gold nanoparticles in aqueous solutions. Colloids Surf A: Physicochem Eng Asp 347:18–26

    Article  CAS  Google Scholar 

  25. Okitsu K, Yue A, Tanabe S, Matsumoto H (2000) Sonochemical preparation and catalytic behavior of highly dispersed palladium nanoparticles on alumina. Chem Mater 12:3006–3011

    Article  CAS  Google Scholar 

  26. Xu H, Suslick KS (2010) Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 4:3209–3214

    Article  CAS  Google Scholar 

  27. Okitsu K, Yue A, Tanabe S, Matsumoto H (2002) Formation of palladium nanoclusters on Y-zeolite via a sonochemical process and conventional methods. Bull Chem Soc Jpn 75:449–455

    Article  CAS  Google Scholar 

  28. Okitsu K, Murakami M, Tanabe S, Matsumoto H (2000) Catalytic behavior of Au Core/Pd shell nanoparticles on silica prepared by sonochemical and Sol–gel processes. Chem Lett 29:1336–1337

    Article  Google Scholar 

  29. Nakagawa T, Nitani H, Tanabe S, Okitsu K, Seino S, Mizukoshi Y, Yamamoto TA (2005) Structural analysis of sonochemically prepared Au/Pd nanoparticles dispersed in porous silica matrix. Ultrason Sonochem 12:249–254

    Article  CAS  Google Scholar 

  30. Mizukoshi Y, Makise Y, Shuto T, Hu J, Tominaga A, Shironita S, Tanabe S (2007) Immobilization of noble metal nanoparticles on the surface of TiO2 by sonochemical method: photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrason Sonochem 14:387–392

    Article  CAS  Google Scholar 

  31. Mizukoshi Y, Sato K, Konno TJ, Masahashi N, Tanabe S (2008) Magnetically retrievable palladium/maghemite nanocomposite catalysts prepared by sonochemical reduction method. Chem Lett 37:922–923

    Article  CAS  Google Scholar 

  32. Okitsu K, Yue A, Tanabe S, Matsumoto H, Yobiko Y, Yoo Y (2002) Sonolytic control of rate of gold(III) reduction and size of formed gold nanoparticles in an aqueous solution: relation between reduction rates and sizes of formed nanoparticles. Bull Chem Soc Jpn 75:2289–2296

    Article  CAS  Google Scholar 

  33. Okitsu K, Nunota Y (2014) One-pot synthesis of gold nanorods via autocatalytic growth of sonochemically formed gold seeds: the effect of irradiation time on the formation of seeds and nanorods. Ultrason Sonochem 21:1928–1932

    Article  CAS  Google Scholar 

  34. Okitsu K, Ashokkumar M, Grieser F (2005) Sonochemical synthesis of gold nanoparticles in water: effects of ultrasound frequency. J Phys Chem B 109:20673–20675

    Article  CAS  Google Scholar 

  35. Tronson R, Ashokkumar M, Grieser F (2002) Comparison of the effects of water-soluble solutes on multibubble sonoluminescence generated in aqueous solutions by 20- and 515-kHz pulsed ultrasound. J Phys Chem B 106:11064–11068

    Article  CAS  Google Scholar 

  36. Mizukoshi Y, Okitsu K, Maeda Y, Yamamoto TA, Oshima R, Nagata Y (1997) Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution. J Phys Chem B 101:7033–7037

    Article  CAS  Google Scholar 

  37. Mizukoshi Y, Fujimoto T, Nagata Y, Oshima R, Maeda Y (2000) Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J Phys Chem B 104:6028–6032

    Article  CAS  Google Scholar 

  38. Arai M, Usui K-I, Nishiyama Y (1993) Preparation of alumina-supported platinum catalyst at ambient temperature for selective synthesis of cinnamyl alcohol by liquid-phase cinnamaldehyde hydrogenation. J Chem Soc Chem Commun :1853–1854

    Google Scholar 

  39. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  40. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiOn surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  41. Agrios AG, Pichat P (2006) Recombination rate of photogenerated charges versus surface area: opposing effects of TiO2 sintering temperature on photocatalytic removal of phenol, anisole, and pyridine in water. J Photochem Photobiol A 180:130–135

    Article  CAS  Google Scholar 

  42. Michaelson HB (1977) The work function of the elements and its periodicity. J Appl Phys 48:4728–4733

    Article  Google Scholar 

  43. Wang X, Yu JC, Yip H-Y, Wu L, Wong P-K, Lai S-Y (2005) A mesoporous Pt/TiO2 nanoarchitecture with catalytic and photocatalytic functions. Chem Eur J 11:2997–3004

    Article  CAS  Google Scholar 

  44. Tian Y, Tatsuma T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127:7632–7637

    Article  CAS  Google Scholar 

  45. Mizukoshi Y, Tsuru Y, Tominaga A, Seino S, Masahashi N, Tanabe S, Yamamoto TA (2008) Sonochemical immobilization of noble metal nanoparticles on the surface of maghemite: mechanism and morphological control of the products. Ultrason Sonochem 15:875–880

    Article  CAS  Google Scholar 

  46. Doktycz SJ, Suslick K (1990) Interparticle collisions driven by ultrasound. Science 247:1067–1069

    Article  CAS  Google Scholar 

  47. Mulvaney P, Giersig M, Henglein A (1992) Surface chemistry of colloidal gold: deposition of lead and accompanying optical effects. J Phys Chem 96:10419–10424

    Article  CAS  Google Scholar 

  48. Mizukoshi Y, Sato K, Konno TJ, Masahashi N (2010) Dependence of photocatalytic activities upon the structures of Au/Pd bimetallic nanoparticles immobilized on TiO2 surface. Appl Catal Environ 94:248–253

    Article  CAS  Google Scholar 

  49. Su R, Tiruvalam R, Logsdail AJ, He Q, Downing CA, Jensen MT, Dimitratos N, Kesavan L, Wells PP, Bechstein R, Jensen HH, Wendt S, Catlow CRA, Kiely CJ, Hutchings GJ, Besenbacher F (2014) Designer titania-supported Au–Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8:3490–3497

    Article  CAS  Google Scholar 

  50. Shiraishi Y, Sakamoto H, Sugano Y, Ichikawa S, Hirai T (2013) Pt–Cu bimetallic alloy nanoparticles supported on anatase TiO2: highly active catalysts for aerobic oxidation driven by visible light. ACS Nano 7:9287–9297

    Article  CAS  Google Scholar 

  51. Nakato Y, Ueda K, Yano H, Tsubomura H (1988) Effect of microscopic discontinuity of metal overlayers on the photovoltages in metal-coated semiconductor-liquid junction photoelectrochemical cells for efficient solar energy conversion. J Phys Chem 92:2316–2324

    Article  CAS  Google Scholar 

  52. Wood DM (1981) Classical size dependence of the work function of small metallic spheres. Phys Rev Lett 46:749

    Article  CAS  Google Scholar 

  53. Yi DK, Lee SS, Ying JY (2006) Synthesis and applications of magnetic nanocomposite catalysts. Chem Mater 18:2459–2461

    Article  CAS  Google Scholar 

  54. Wang Z, Xiao P, Shen B, He N (2006) Synthesis of palladium-coated magnetic nanoparticle and its application in Heck reaction. Colloids Surf A 276:116–121

    Article  CAS  Google Scholar 

  55. Guin D, Baruwati B, Manorama SV (2007) Pd on amine-terminated ferrite nanoparticles: a complete magnetically recoverable facile catalyst for hydrogenation reactions. Org Lett 9:1419–1421

    Article  CAS  Google Scholar 

  56. Okitsu K, Nagaoka S, Tanabe S, Matsumoto H, Mizukoshi Y, Nagata Y (1999) Sonochemical preparation of size-controlled palladium nanoparticles on alumina surface. Chem Lett 28:271–272

    Article  Google Scholar 

  57. Creighton JA, Eadon DG (1991) Ultraviolet–visible absorption spectra of the colloidal metallic elements. J Chem Soc Faraday Trans 87:3881–3891

    Article  CAS  Google Scholar 

  58. Nagaveni K, Gayen A, Subbanna GN, Hegde MS (2002) Pd-coated Ni nanoparticles by the polyol method: an efficient hydrogenation catalyst. J Mater Chem 12:3147–3151

    Article  CAS  Google Scholar 

  59. Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674–12675

    Article  CAS  Google Scholar 

  60. Storhoff JJ, Lazaorides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122:4640–4650

    Article  CAS  Google Scholar 

  61. Liu T, Tang J, Jiang L (2002) Sensitivity enhancement of DNA sensors by nanogold surface modification. Biochem Biophys Res Commun 295:14–16

    Article  CAS  Google Scholar 

  62. Nuzzo RG, Allara DL (1983) Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 105:4481–4483

    Article  CAS  Google Scholar 

  63. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  64. Kiang CH (2003) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Phys A 321:164–169

    Article  CAS  Google Scholar 

  65. Mizukoshi Y, Seino S, Kinoshita T, Nakagawa T, Yamamoto TA, Tanabe S (2006) Selective magnetic separation of sulfur-containing amino acids by sonochemically prepared Au/gamma-Fe2O3 composite nanoparticles. Scr Mater 54:609–613

    Article  CAS  Google Scholar 

  66. Mizukoshi Y, Seino S, Okitsu K, Kinoshita T, Otome Y, Nakagawa T, Yamamoto TA (2005) Sonochemical preparation of composite nanoparticles of Au/gamma-Fe2O3 and magnetic separation of glutathione. Ultrason Sonochem 12:191–195

    Article  CAS  Google Scholar 

  67. Kinoshita T, Seino S, Mizukoshi Y, Nakagawa T, Yamamoto TA (2007) Functionalization of magnetic gold/iron-oxide composite nanoparticles with oligonucleotides and magnetic separation of specific target. J Magn Magn Mater 311:255–258

    Article  CAS  Google Scholar 

  68. Sousa MH, Rubim JC, Sobrinho PG, Tourinho FA (2001) Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures. J Magn Magn Mater 225:67–72

    Article  CAS  Google Scholar 

  69. Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72:5535–5541

    Article  CAS  Google Scholar 

  70. Park K, Drummy LF, Wadams RC, Koerner H, Nepal D, Fabris L, Vaia RA (2013) Growth mechanism of gold nanorods. Chem Mater 25:555–563

    Article  CAS  Google Scholar 

  71. Jiang XC, Pileni MP (2007) Gold nanorods: influence of various parameters as seeds, solvent, surfactant on shape control. Colloids Surf A 295:228–232

    Article  CAS  Google Scholar 

  72. Liu J, Duggan JN, Morgan J, Roberts CB (2012) Seed-mediated growth and manipulation of Au nanorods via size-controlled synthesis of Au seeds. J Nanoparticle Res 14:1289

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Okitsu .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Okitsu, K., Mizukoshi, Y. (2016). Catalytic Applications of Noble Metal Nanoparticles Produced by Sonochemical Reduction of Noble Metal Ions. In: Handbook of Ultrasonics and Sonochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-287-278-4_13

Download citation

Publish with us

Policies and ethics