Skip to main content

Microstrip Patch Antennas

  • Reference work entry
  • First Online:
Handbook of Antenna Technologies

Abstract

The basic geometry of a microstrip patch antenna (MPA) consists of a metallic patch which is either printed on a grounded substrate or suspended above a ground plane. The antenna is usually fed either by a coaxial probe or a stripline. In the coaxial case, the center conductor is directly connected to the patch and the outer conductor to the ground. In the stripline case, energy is coupled to the patch in several ways: by direct connection, by proximity coupling, and by aperture coupling. The patch antenna idea appeared to be originated in the early 1950s, but there was little activity for almost two decades, mainly due to its inherent narrow bandwidth. It began to attract the serious attention of the antenna community in the 1970s, as antenna designers began to appreciate the advantages offered by this type of antennas, which include low profile, conformability to a shaped surface, ease of fabrication, and compatibility with integrated circuit technology. In the last three decades, extensive studies have been devoted to improving the bandwidth and other performance characteristics. This chapter begins with a brief description of the modeling techniques and basic characteristics of the MPA. Methods for broadbanding are then discussed, followed by dual- and multiband designs, size reduction techniques, circularly polarized patch antennas, and frequency-agile and polarization-agile designs. The chapter ends with some concluding remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anguera J, Font G, Puente C, Borja C, Soler J (2003) Multifrequency microstrip patch antenna using multiple stacked elements. IEEE Microwave Wireless Compon Lett 13(3):123–124

    Article  Google Scholar 

  • Bahl I, Bhartia P (1980) Microstrip antennas. Artech House, Dedham

    Google Scholar 

  • Barlately L, Mosig JR, Sphicopoulos T (1990) Analysis of stacked microstrip patches with a mixed potential integral equation. IEEE Trans Antennas Propag 38(5):608–615

    Article  Google Scholar 

  • Best SR (2009) The significance of ground-plane size and antenna location in establishing the performance of ground-plane-dependent antennas. IEEE Antennas Propag Mag 51(6):29–43

    Article  Google Scholar 

  • Bhalla R, Shafai L (2002) Broadband patch antenna with a circular arc shaped slot. In: IEEE Antennas and Propagation Society international symposium (IEEE Cat. No.02CH37313), IEEE, pp 394–397, San Antonio, Texas

    Google Scholar 

  • Bhartia P, Bahl I (1982) A frequency agile microstrip antenna. In: 1982 Antennas and Propagation Society international symposium. Institute of Electrical and Electronics Engineers, pp 304–307, Albuquerque, New Mexico

    Google Scholar 

  • Chair R, Lee KF, Luk KM (1999) Bandwidth and cross-polarization characteristics of quarter-wave shorted patch antennas. Microw Opt Technol Lett 22(2):101–103

    Article  Google Scholar 

  • Chair R, Mak C-L, Kishk AA (2005) Miniature wide-band half U-slot and half E-shaped patch antennas. IEEE Trans Antennas Propag 53(8):2645–2652

    Article  Google Scholar 

  • Chen ZN, Chia MYW (2005) Broadband planar antennas: design and applications. Wiley-Chichester

    Google Scholar 

  • Chung KL, Mohan AS (2003) A systematic design method to obtain broadband characteristics for singly-fed electromagnetically coupled patch antennas for circular polarization. IEEE Trans Antennas Propag 51(12):3239–3248

    Article  Google Scholar 

  • Clenet M, Shafai L (1999) Multiple resonances and polarisation of U-slot patch antenna. Electron Lett 35(2):101–103

    Article  Google Scholar 

  • Croq F, Papiernik A (1990) Large bandwidth aperture-coupled microstrip antenna. Electron Lett 26(16):1293–1294

    Article  Google Scholar 

  • Dahele JS, Lee KF (1985) Theory and experiment on microstrip antennas with airgaps. IEE Proc H Microwaves Antennas Propag 132(7):455–460

    Article  Google Scholar 

  • Dahele J, Lee K, Wong D (1987) Dual-frequency stacked annular-ring microstrip antenna. IEEE Trans Antennas Propag 35(11):1281–1285

    Article  Google Scholar 

  • Debatosh G, Antar YMM (2010) Microstrip and printed antennas: new trends, techniques and applications. Wiley, Hoboken

    Google Scholar 

  • Deschamps GA, Sichak W (1953) Microstrip microwave antennas. In: Third USAF symposium on antennas, Monticello, Illinois

    Google Scholar 

  • Deshmukh AA, Ray KP (2010) Multi-band configurations of stub-loaded slotted rectangular microstrip antennas. IEEE Antennas Propag Mag 52(1):89–103

    Article  Google Scholar 

  • Garg R et al (2000) Microstrip antenna design handbook. Artech House, Boston

    Google Scholar 

  • Hall PS, Dahele JS (1997) Dual-band circularly polarized microstrip antenna. In: Lee KF, Chen W (eds) Advances in microstrip and printed antennas. Wiley Interscience, New York, pp 163–217

    Google Scholar 

  • Hirasawa K, Haneishi M (1992) Analysis, design, and measurement of small and low-profile antennas. Artech House Publishers, Boston

    Google Scholar 

  • Huang J (2008) Microstrip antennas: analysis, design, and application. In: Balanis CA (ed) Modern antenna handbook. Wiley, Hoboken

    Google Scholar 

  • Huynh T, Lee KF (1995) Single-layer single-patch wideband microstrip antenna. Electron Lett 31(16):1310–1312

    Article  Google Scholar 

  • Huynh T, Lee KF, Lee R (1988) Crosspolarisation characteristics of rectangular patch antennas. Electron Lett 24(8):463–464

    Article  Google Scholar 

  • Ichinoseki-Sekine N et al (2007) Changes in muscle temperature induced by 434 MHz microwave hyperthermia. Br J Sports Med 41(7):425–429

    Article  Google Scholar 

  • Jackson R, Ramadoss R (2007) A MEMS-based electrostatically tunable circular microstrip patch antenna. J Micromech Microeng 17(1):1–8

    Article  Google Scholar 

  • James JR, Hall PS (eds) (1989) Handbook of microstrip antennas. Peregrinus, London

    Google Scholar 

  • James JR, Hall PS, Wood C (1981) Microstrip antenna theory and design. Peregrinus, London

    Book  Google Scholar 

  • Kalialakis C, Hall PS (2007) Analysis and experiment on harmonic radiation and frequency tuning of varactor-loaded microstrip antennas. IET Microwaves Antennas Propag 1(2):527–535

    Article  Google Scholar 

  • Khidre A, Lee KF, Yang F, Elsherbeni A (2010) Wideband circularly polarized E-shaped patch antenna for wireless applications. IEEE Antennas Propag Mag 52(5):219–229

    Article  Google Scholar 

  • Khidre A, Lee KF, Elsherbeni A, Yang F (2013) Circular polarization reconfigurable wideband E- shaped patch antenna for wireless applications. IEEE Trans Antennas Propag 61(2):960–964

    Article  Google Scholar 

  • Kobayashi H, Nikawa Y, Okada F, Mori S (1989) Flexible microstrip patch applicator for hyperthermia. In: Digest on Antennas and Propagation Society international symposium, IEEE, pp 536–539, San Jose, CA

    Google Scholar 

  • Kumar G, Gupta K (1984) Broad-band microstrip antennas using additional resonators gap-coupled to the radiating edges. IEEE Trans Antennas Propag 32(12):1375–1379

    Article  Google Scholar 

  • Kumar G, Ray KP (2003) Broadband microstrip antennas. Artech House Publishers, Boston

    Google Scholar 

  • Lee KF, Chen W (1997) Advances in microstrip and printed antennas. Wiley Interscience, New York

    Google Scholar 

  • Lee KF, Dahele JS (1989) Characteristics of microstrip patch antennas and some methods of improving frequency agility and bandwidth. In: James JR, Hall PS (eds) Handbook of microstrip antennas. Peregrinus, London, pp 111–214

    Chapter  Google Scholar 

  • Lee KF, Luk KM (2010) Microstrip patch antennas. Imperial College Press, London

    Book  Google Scholar 

  • Lee K, Tong K (2012) Microstrip patch antennas – basic characteristics and some recent advances. Proc IEEE 100(7):2169–2180

    Article  Google Scholar 

  • Lee RQ, Lee K, Bobinchak J (1987) Characteristics of a two-layer electromagnetically coupled rectangular patch antenna. Electron Lett 23(20):1070–1072

    Article  Google Scholar 

  • Lee KF, Luk KM, Dahele JS (1988) Characteristics of the equilateral triangular patch antenna. IEEE Trans Antennas Propag 36(11):1510–1518

    Article  Google Scholar 

  • Lee K-F, Chen W, Lee RQ (1995) Studies of stacked electromagnetically coupled patch antennas. Microw Opt Technol Lett 8(4):212–215

    Article  Google Scholar 

  • Lee KF, Luk KM, Tong KF, Shum SM, Huynh T, Lee RQ (1997) Experimental and simulation studies of the coaxially fed U-slot rectangular patch antenna. IEE Proc Microwaves Antennas Propag 144(5):354–358

    Article  Google Scholar 

  • Lee KF, Guo YX, Hawkins JA, Chair R, Luk KM (2000) Theory and experiment on microstrip patch antennas with shorting walls. IEE Proc Microwaves Antennas Propag 147(6):521–525

    Article  Google Scholar 

  • Lee KF, Yang SLS, Kishk AA (2008) Dual- and multiband U-slot patch antennas. IEEE Antennas Wirel Propag Lett 7:645–647

    Article  Google Scholar 

  • Lee KF, Yang SL, Kishk AA, Luk KM (2010) The versatile U-slot patch antenna. IEEE Antennas Propag Mag 52(1):71–88

    Article  Google Scholar 

  • Lee KF, Luk KM, Mak KM, Yang SLS (2011) On the use of U-slots in the design of dual-and triple-band patch antennas. IEEE Antennas Propag Mag 53(3):60–74

    Article  Google Scholar 

  • Lo Y, Solomon D, Richards W (1979) Theory and experiment on microstrip antennas. IEEE Trans Antennas Propag 27(2):137–145

    Article  Google Scholar 

  • Long S, Walton M (1979) A dual-frequency stacked circular-disc antenna. IEEE Trans Antennas Propag 27(2):270–273

    Article  Google Scholar 

  • Luk KM, Mak CL et al (1998a) Broadband microstrip patch antenna. Electron Lett 34(15):1442–1443

    Article  Google Scholar 

  • Luk KM, Chair R, Lee KF (1998b) Small rectangular patch antenna. Electron Lett 34(25):2366–2367

    Article  Google Scholar 

  • Mak C, Lee K, Luk K (2000) Broadband patch antenna with a T-shaped probe. IEE Proc Microwaves Antennas Propag 147(2):73–76

    Article  Google Scholar 

  • Mak C-L, Wong H, Luk K-M (2005) High-gain and wide-band single-layer patch antenna for wireless communications. IEEE Trans Veh Technol 54(1):33–40

    Article  Google Scholar 

  • Mao Y, Padooru Y, Lee KF, Elsherbeni A, Yang F (2011) Air gap tuning of patch antenna resonance. In: 2011 I.E. international symposium on antennas and propagation (APSURSI), IEEE, pp 3088–3090, Spokane, Washington

    Google Scholar 

  • Mok WC, Wong SH, Luk KM, Lee KF (2013) Single-layer single-patch dual-band and triple-band patch antennas. IEEE Trans Antennas Propag 61(8):4341–4344

    Article  Google Scholar 

  • Mosig J, Gardiol F (1985) General integral equation formulation for microstrip antennas and scatterers. IEE Proc H Microwaves Antennas Propag 132(7):424–432

    Article  Google Scholar 

  • Nakano H, Yamazaki M, Yamauchi J (1997) Electromagnetically coupled curl antenna. Electron Lett 33(12):1003–1004

    Article  Google Scholar 

  • Pinhas S, Shtrikman S (1988) Comparison between computed and measured bandwidth of quarter-wave microstrip radiators. IEEE Trans Antennas Propag 36(11):1615–1616

    Article  Google Scholar 

  • Pozar DM (1985) Microstrip antenna aperture-coupled to a microstripline. Electron Lett 21(2):49–50

    Article  Google Scholar 

  • Pozar DM (1992) Microstrip antennas. Proc IEEE 80(1):79–91

    Article  Google Scholar 

  • Qin P-Y et al (2010) Polarization reconfigurable U-slot patch antenna. IEEE Trans Antennas Propag 58(10):3383–3388

    Article  Google Scholar 

  • Rafi G, Shafai L (2004) Broadband microstrip patch antenna with V-slot. IEE Proc Microwaves Antennas Propag 151(5):435–440

    Article  Google Scholar 

  • Reineix A, Jecko B (1989) Analysis of microstrip patch antennas using finite difference time domain method. IEEE Trans Antennas Propag 37(11):1361–1369

    Article  Google Scholar 

  • Richards WF, Lo YT, Harrison DD (1981) An improved theory for microstrip antennas and applications. IEEE Trans Antennas Propag 29(1):38–46

    Article  Google Scholar 

  • Sabban A (1983) A new broadband stacked two-layer microstrip antenna. In: 1983 Antennas and Propagation Society international symposium, Institute of Electrical and Electronics Engineers, pp 63–66, Houston, Texas

    Google Scholar 

  • Salon S, Chari MVK (1999) Numerical methods in electromagnetism. Academic, San Diego

    Google Scholar 

  • Schaubert D et al (1981) Microstrip antennas with frequency agility and polarization diversity. IEEE Trans Antennas Propag 29(1):118–123

    Article  MathSciNet  Google Scholar 

  • Schneider MV (1969) Microstrip lines for microwave integrated circuits. Bell Syst Tech J 48(5):1421–1444

    Article  Google Scholar 

  • Shackelford AK et al (2001) U-slot patch antenna with shorting pin. Electron Lett 37(12):729–730

    Article  Google Scholar 

  • Shackelford AK, Lee KF, Luk KM (2003) Design of small-size wide-bandwidth microstrip-patch antennas. IEEE Antennas Propag Mag 45(1):75–83

    Article  Google Scholar 

  • Shafai L (2007) Wideband microstrip antennas. In: Volakis JL (ed) Antenna engineering handbook. McGraw Hill, New York

    Google Scholar 

  • Tong K-F, Wong T-P (2007) Circularly polarized U-slot antenna. IEEE Trans Antennas Propag 55(8):2382–2385

    Article  Google Scholar 

  • Tong KF et al (2000) A broad-band U-slot rectangular patch antenna on a microwave substrate. IEEE Trans Antennas Propag 48(6):954–960

    Article  Google Scholar 

  • Tong KF, Lee KF, Luk KM (2011) On the effect of ground plane size to wideband shorting-wall probe-fed patch antennas. In: 2011 IEEE-APS topical conference on antennas and propagation in wireless communications, IEEE, pp 486–486, Torino, Italy

    Google Scholar 

  • Waterhouse RB, Shuley NV (1994) Full characterisation of varactor-loaded, probe-fed, rectangular, microstrip patch antennas. IEE Proc Microwaves Antennas Propag 141(5):367–373

    Article  Google Scholar 

  • Waterhouse RB, Targonski SD, Kokotoff DM (1998) Design and performance of small printed antennas. IEEE Trans Antennas Propag 46(11):1629–1633

    Article  Google Scholar 

  • Weigand S et al (2003) Analysis and design of broad-band single-layer rectangular u-slot microstrip patch antennas. IEEE Trans Antennas Propag 51(3):457–468

    Article  Google Scholar 

  • Wong KL (2002) Compact and broadband microstrip antennas. Wiley Interscience, New York

    Book  Google Scholar 

  • Wong H, Luk KM, Chan CH, Xue Q, So KK, Lai HW (2012) Small antennas in wireless communications. IEEE Proc 100(7):2109–2121

    Article  Google Scholar 

  • Wood C (1981) Analysis of microstrip circular patch antennas. IEE Proc H Microwaves Opt Antennas 128(2):69–76

    Article  Google Scholar 

  • Yang F, Zhang, X-X, Rahmat-Samii (2001a). Wide-band E-shaped patch antennas for wireless communications. IEEE Trans Antennas Propag 49(7):1094–1100

    Google Scholar 

  • Yang F, Rahmat-Samii Y (2001b) Patch antenna with switchable slot (PASS): dual-frequency operation. Microw Opt Technol Lett 31(3):165–168

    Article  Google Scholar 

  • Yang F, Rahmat-Samii Y (2002) A reconfigurable patch antenna using switchable slots for circular polarization diversity. IEEE Microwave Wireless Compon Lett 12(3):96–98

    Article  Google Scholar 

  • Yang S et al (2008) Design and study of wideband single feed circularly polarized microstrip antennas. Prog Electromagn Res 80:45–61

    Article  Google Scholar 

  • Zhong SS, Lo YT (1983) Single-element rectangular microstrip antenna for dual-frequency operation. Electron Lett 19(8):298–300

    Article  Google Scholar 

  • Zurcher J, Gardiol F (1995) Broadband patch antenna. Artech House Publishers, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Fong Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Lee, K.F., Tong, KF. (2016). Microstrip Patch Antennas. In: Chen, Z., Liu, D., Nakano, H., Qing, X., Zwick, T. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-44-3_29

Download citation

Publish with us

Policies and ethics